1
|
Morales-Martínez M, Vega MI. p38 Molecular Targeting for Next-Generation Multiple Myeloma Therapy. Cancers (Basel) 2024; 16:256. [PMID: 38254747 PMCID: PMC10813990 DOI: 10.3390/cancers16020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Resistance to therapy and disease progression are the main causes of mortality in most cancers. In particular, the development of resistance is an important limitation affecting the efficacy of therapeutic alternatives for cancer, including chemotherapy, radiotherapy, and immunotherapy. Signaling pathways are largely responsible for the mechanisms of resistance to cancer treatment and progression, and multiple myeloma is no exception. p38 mitogen-activated protein kinase (p38) is downstream of several signaling pathways specific to treatment resistance and progression. Therefore, in recent years, developing therapeutic alternatives directed at p38 has been of great interest, in order to reverse chemotherapy resistance and prevent progression. In this review, we discuss recent findings on the role of p38, including recent advances in our understanding of its expression and activity as well as its isoforms, and its possible clinical role based on the mechanisms of resistance and progression in multiple myeloma.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology and Clinical Nutrition Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, Chan KKL, Ngu SF, Ngan HYS, Chan DW. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biol 2019; 2:281. [PMID: 31372520 PMCID: PMC6668395 DOI: 10.1038/s42003-019-0508-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is an intra-abdominal tumor in which the presence of ascites facilitates metastatic dissemination, and associated with poor prognosis. However, the significance of metabolic alterations in ovarian cancer cells in the ascites microenvironment remains unclear. Here we show ovarian cancer cells exhibited increased aggressiveness in ascites microenvironment via reprogramming of lipid metabolism. High lipid metabolic activities are found in ovarian cancer cells when cultured in the ascites microenvironment, indicating a metabolic shift from aerobic glycolysis to β-oxidation and lipogenesis. The reduced AMP-activated protein kinase (AMPK) activity due to the feedback effect of high energy production led to the activation of its downstream signaling, which in turn, enhanced the cancer growth. The combined treatment of low toxic AMPK activators, the transforming growth factor beta-activated kinase 1 (TAK1) and fatty acid synthase (FASN) inhibitors synergistically impair oncogenic augmentation of ovarian cancer. Collectively, targeting lipid metabolism signaling axis impede ovarian cancer peritoneal metastases.
Collapse
Affiliation(s)
- Rain R. Chen
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Mingo M. H. Yung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Xuan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Shijie Zhan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
| | - Leanne L. Leung
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Rachel R. Liang
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Thomas H. Y. Leung
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 P.R. China
| | - Rakesh Sharma
- Proteomics & Metabolomics Core Facility, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Siew-Fei Ngu
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hextan Y. S. Ngan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - David W. Chan
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, P. R. China
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
3
|
Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 2018; 8:33666-33675. [PMID: 28430599 PMCID: PMC5464900 DOI: 10.18632/oncotarget.16895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer. We found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of Dox in a panel of cervical cancer cell lines. Treatment with 5Z-7-oxozeaenol hindered Dox-induced NF-κB activation and promoted Dox-induced apoptosis in cervical cancer cells. Moreover, 5Z-7-oxozeaenol showed similar effects in both positive and negative human papillomavirus-infected cervical cancer cells. Taken together, our results provide evidence that TAK1 inhibition significantly sensitizes cervical cancer cells to chemotherapy-induced cell death and supports the use of TAK1 inhibitor with current chemotherapies in the clinic for patients with refractory cervical cancer.
Collapse
Affiliation(s)
- Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Haoqian Liang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
4
|
Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK -ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017; 33-35:36-42. [DOI: 10.1016/j.drup.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023]
|
5
|
Kobayashi A, Kobayashi S, Miyai K, Osawa Y, Horiuchi T, Kato S, Maekawa T, Yamamura T, Watanabe J, Sato K, Tsuda H, Kimura F. TAK1 inhibition ameliorates survival from graft-versus-host disease in an allogeneic murine marrow transplantation model. Int J Hematol 2017; 107:222-229. [PMID: 29027124 DOI: 10.1007/s12185-017-2345-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022]
Abstract
Acute graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in allogeneic hematopoietic cell transplantation (allo-HCT). Majority of the current immunosuppressive strategies targeting donor T cells to prevent or treat acute GVHD are only partially effective, and often require escalated immunosuppressive therapy. Recent studies have revealed that activation of antigen-presenting cells in the proinflammatory milieu is important for the priming and promotion of GVHD. This activation is mediated by innate immune signaling pathways, which therefore potentially represent new targets in addressing GVHD. Using gene expression analysis of peripheral monocytes from patients' post-allo-HCT, we detected an upregulation of TGF-β-activated kinase 1 (TAK1), a key regulator of the toll-like receptor signaling pathway. 5Z-7-oxozeaenol, a selective inhibitor of TAK1, reduced proinflammatory cytokine production by activated monocytes under lipopolysaccharide stimulation and T cell proliferation in allogeneic-mixed leukocyte reactions with monocyte-derived dendritic cells. In an experimental mouse model of GVHD, 5Z-7-oxozeaenol administration after allo-HCT ameliorated GVHD severity and mortality, with significant reduction in serum TNFα, IL-1β, and IL-12 levels. Our findings suggest that altering the activation status of innate immune cells by TAK1 inhibition may be a novel therapeutic approach for acute GVHD.
Collapse
Affiliation(s)
- Ayako Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Shinichi Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yukiko Osawa
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Toshikatsu Horiuchi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Shoichiro Kato
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takaaki Maekawa
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takeshi Yamamura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Junichi Watanabe
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Ken Sato
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
6
|
Yang Y, Qiu Y, Tang M, Wu Z, Hu W, Chen C. Expression and function of transforming growth factor‑β‑activated protein kinase 1 in gastric cancer. Mol Med Rep 2017; 16:3103-3110. [PMID: 28714004 PMCID: PMC5548047 DOI: 10.3892/mmr.2017.6998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression and role of transforming growth factor (TGF) ‑β‑activated protein kinase 1 (TAK1) in human gastric cancer. Immunohistochemistry was performed to investigate the expression of TAK1 in surgical specimens of human gastric cancer tissue and adjacent normal tissue. The association between TAK1 and clinicopathologic factors was analyzed and the association between TAK1 expression and the overall survival rates was evaluated using Kaplan‑Meier curves. In addition, the effect of the TAK1 selective inhibitor 5Z‑7‑oxozeaenol (OZ) on the biological characteristics of MGC803 human gastric cancer cells in vitro were investigated. The role of TAK1 in gastric cancer cell proliferation, apoptosis and invasion were determined by cell proliferation assays, flow cytometry analysis and transwell invasion assays, respectively. The findings of the present study demonstrated that the positive expression rate of TAK1 in gastric cancer and adjacent normal tissues was 70.5 and 25.9%, respectively. Furthermore, TAK1 expression was significantly associated with advanced N stage and pathological stage (P<0.05). Survival analysis of 139 patients with gastric cancer indicated a lower overall survival rate of patients in the TAK1‑positive group compared with the TAK1‑negative group (P<0.05). In addition, treatment with the TAK1 selective inhibitor OZ reduced the proliferation and invasion abilities of MGC803 cells and significantly reduced the expression levels of phosphorylated‑TAK1 (Thr187), nuclear p65, cyclin D1, Bcl‑2 apoptosis regulator and matrix metallopeptidase (MMP)9 (P<0.05). OZ treatment significantly increased the expression levels of cytosolic cytochrome c and cleaved caspase 3 and the apoptosis rate in MGC803 cells (P<0.05). In conclusion, these findings suggest that increased TAK1 expression may be involved in the progression of gastric cancer; therefore, TAK1 may be used as a future therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Mubai Tang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Zhaoshu Wu
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Weidong Hu
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| | - Chaobo Chen
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| |
Collapse
|