1
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
2
|
McInerney-Leo AM, Chew HY, Inglis PL, Leo PJ, Joseph SR, Cooper CL, Okano S, Hassall T, Anderson L, Bowman RV, Gattas M, Harris JE, Marshall MS, Shaw JG, Wheeler L, Yang IA, Brown MA, Fong KM, Simpson F, Duncan EL. Germline ERBB3 mutation in familial non-small cell lung carcinoma: Expanding ErbB's role in oncogenesis. Hum Mol Genet 2021; 30:2393-2401. [PMID: 34274969 PMCID: PMC8643496 DOI: 10.1093/hmg/ddab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the commonest cause of cancer deaths worldwide. Although strongly associated with smoking, predisposition to lung cancer is also heritable, with multiple common risk variants identified. Rarely, dominantly inherited non-small-cell lung cancer (NSCLC) has been reported due to somatic mutations in EGFR/ErbB1 and ERBB2. Germline exome sequencing was performed in a multi-generation family with autosomal dominant NSCLC, including an affected child. Tumour samples were also sequenced. Full-length wild-type (wtErbB3) and mutant ERBB3 (mutErbB3) constructs were transfected into HeLa cells. Protein expression, stability, and subcellular localization were assessed, and cellular proliferation, pAkt/Akt and pERK levels determined. A novel germline variant in ERBB3 (c.1946 T > G: p.Iso649Arg), coding for receptor tyrosine-protein kinase erbB-3 (ErbB3), was identified, with appropriate segregation. There was no loss-of-heterozygosity in tumour samples. Both wtErbB3 and mutErbB3 were stably expressed. MutErbB3-transfected cells demonstrated an increased ratio of the 80 kDa form (which enhances proliferation) compared with the full-length (180 kDa) form. MutErbB3 and wtErbB3 had similar punctate cytoplasmic localization pre- and post-epidermal growth factor stimulation; however, epidermal growth factor receptor (EGFR) levels decreased faster post-stimulation in mutErbB3-transfected cells, suggesting more rapid processing of the mutErbB3/EGFR heterodimer. Cellular proliferation was increased in mutErbB3-transfected cells compared with wtErbB3 transfection. MutErbB3-transfected cells also showed decreased pAkt/tAkt ratios and increased pERK/tERK 30 min post-stimulation compared with wtErbB3 transfection, demonstrating altered signalling pathway activation. Cumulatively, these results support this mutation as tumorogenic. This is the first reported family with a germline ERBB3 mutation causing heritable NSCLC, furthering understanding of the ErbB family pathway in oncogenesis.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Hui Yi Chew
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Po-Ling Inglis
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Shannon R Joseph
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Caroline L Cooper
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Brisbane.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006
| | - Satomi Okano
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Tim Hassall
- Queensland Children's Hospital, South Brisbane, QLD, 4101
| | - Lisa Anderson
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Rayleen V Bowman
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Michael Gattas
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Jessica E Harris
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Mhairi S Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Janet G Shaw
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Lawrie Wheeler
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Ian A Yang
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Matthew A Brown
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College London NIHR Biomedical Research Centre, King's College London, United Kingdom
| | - Kwun M Fong
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Fiona Simpson
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Twin Research and Genetic Epidemiology, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
4
|
Caviglia GP, Abate ML, Rolle E, Carucci P, Armandi A, Rosso C, Olivero A, Ribaldone DG, Tandoi F, Saracco GM, Ciancio A, Bugianesi E, Gaia S. The Clinical Role of Serum Epidermal Growth Factor Receptor 3 in Hepatitis C Virus-Infected Patients with Early Hepatocellular Carcinoma. BIOLOGY 2021; 10:215. [PMID: 33799723 PMCID: PMC7999043 DOI: 10.3390/biology10030215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Epidermal growth factor receptor 3 (ERBB3) is a surface tyrosine kinase receptor belonging to the EGFR/ERBB family, involved in tumor development and progression. We evaluated the diagnostic and prognostic value of serum ERBB3 measurement in hepatitis C virus (HCV)-infected patients with early hepatocellular carcinoma (HCC). A total of 164 HCV-infected patients (82 with cirrhosis and 82 with early HCC) were included in the study. HCC was classified according to the Barcelona Clinic Liver Cancer (BCLC) staging system. Among patients with HCC, 23 (28%) had a diagnosis of very early tumor (BCLC = 0), while 59 (62%) had a diagnosis of early HCC (BCLC = A). Median overall survival (OS) in patients with HCC was 79.2 (95% CI 51.6-124.8) months. While ERBB3 serum values were similar between patients with cirrhosis and those with HCC (p = 0.993), in the latter, serum ERBB3 ≥ 2860 RU resulted significantly and independently associated with OS (Hazard Ratio = 2.24, 95% CI 1.16-4.35, p = 0.017). Consistently, the 1-, 3-, and 5-year OS rates in patients with serum ERBB3 ≥ 2860 RU were 90% (36/40), 53% (19/36), and 28% (8/29) in comparison to patients with serum ERBB3 < 2860 RU, which were 98% (40/41), 80% (32/40), and 74% (26/35) (Log-rank test; p = 0.014). In conclusion, serum ERBB3 values resulted an independent prognostic factor of patients with early HCC and might be useful to tailor more personalized treatment strategies.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Maria Lorena Abate
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Emanuela Rolle
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Patrizia Carucci
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Francesco Tandoi
- Liver Transplant Unit, General Surgery 2U, Department of Surgical Sciences, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy;
| | - Giorgio Maria Saracco
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Alessia Ciancio
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10100 Turin, Italy; (M.L.A.); (A.A.); (C.R.); (A.O.); (D.G.R.); (G.M.S.); (A.C.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| | - Silvia Gaia
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy; (E.R.); (P.C.)
| |
Collapse
|
5
|
Tian M, Wang T, Wang P. Development and Clinical Validation of a Seven-Gene Prognostic Signature Based on Multiple Machine Learning Algorithms in Kidney Cancer. Cell Transplant 2021; 30:963689720969176. [PMID: 33626918 PMCID: PMC7917425 DOI: 10.1177/0963689720969176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About a third of patients with kidney cancer experience recurrence or cancer-related progression. Clinically, kidney cancer prognoses may be quite different, even in patients with kidney cancer at the same clinical stage. Therefore, there is an urgent need to screen for kidney cancer prognosis biomarkers. Differentially expressed genes (DEGs) were identified using kidney cancer RNA sequencing data from the Gene Expression Omnibus (GEO) database. Biomarkers were screened using random forest (RF) and support vector machine (SVM) models, and a multigene signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. Univariate and multivariate Cox regression analyses were performed to explore the relationships between clinical features and prognosis. Finally, the reliability and clinical applicability of the model were validated, and relationships with biological pathways were identified. Western blots were also performed to evaluate gene expression. A total of 50 DEGs were obtained by intersecting the RF and SVM models. A seven-gene signature (RNASET2, EZH2, FXYD5, KIF18A, NAT8, CDCA7, and WNT7B) was constructed by LASSO regression. Univariate and multivariate Cox regression analyses showed that the seven-gene signature was an independent prognostic factor for kidney cancer. Finally, a predictive nomogram was established in The Cancer Genome Atlas (TCGA) cohort and validated internally. In tumor tissue, RNASET2 and FXYD5 were highly expressed and NAT8 was lowly expressed at the protein and transcription levels. This model could complement the clinicopathological characteristics of kidney cancer and promote the personalized management of patients with kidney cancer.
Collapse
Affiliation(s)
- Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co, Ltd, Shenyang, China
| | - Peng Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Xiao J, Lu X, Chen X, Zou Y, Liu A, Li W, He B, He S, Chen Q. Eight potential biomarkers for distinguishing between lung adenocarcinoma and squamous cell carcinoma. Oncotarget 2017; 8:71759-71771. [PMID: 29069744 PMCID: PMC5641087 DOI: 10.18632/oncotarget.17606] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lung adenocarcinoma (LADC) and squamous cell carcinoma (LSCC) are the most common non-small cell lung cancer histological phenotypes. Accurate diagnosis distinguishing between these two lung cancer types has clinical significance. For this study, we analyzed four Gene Expression Omnibus (GEO) datasets (GSE28571, GSE37745, GSE43580, and GSE50081). We then imported the datasets into the Gene-Cloud of Biotechnology Information online platform to identify genes differentially expressed in LADC and LSCC. We identified DSG3 (desmoglein 3), KRT5 (keratin 5), KRT6A (keratin 6A), KRT6B (keratin 6B), NKX2-1 (NK2 homeobox 1), SFTA2 (surfactant associated 2), SFTA3 (surfactant associated 3), and TMC5 (transmembrane channel-like 5) as potential biomarkers for distinguishing between LADC and LSCC. Receiver operating characteristic curve analysis suggested that KRT5 had the highest diagnostic value for discriminating between these two cancer types. Using the PrognoScan online survival analysis tool and the Kaplan-Meier Plotter, we found that high KRT6A or KRT6B levels, or low NKX2-1, SFTA3, or TMC5 levels correlated with unfavorable prognoses in LADC patients. Further studies will be needed to verify our findings in additional patient samples, and to elucidate the mechanisms of action of these potential biomarkers in non-small cell lung cancer.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yong Zou
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang 421001, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|