1
|
Qian W, Li Z, Han J, Tian Y, Niu Z. Functionalization of rod-shaped plant viruses for biomedical applications. NANOSCALE 2025; 17:9072-9085. [PMID: 40125585 DOI: 10.1039/d4nr05354k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Biological nanoparticles, particularly rod-shaped plant viruses, have emerged as promising candidates for various biomedical applications. This review focuses on the morphological characteristics and modification strategies of rod-shaped plant viruses such as tobacco mosaic virus, potato virus X, and papaya mosaic virus. These viruses offer versatile modification approaches, including chemical, genetic, and bio-modifications, as well as aspect ratio regulation. Their applications in drug delivery, antibacterial treatments, RNA delivery, bioimaging, and immune modulation are extensively discussed. Rod-shaped plant viruses exhibit unique advantages, such as uniformity in size and molecular weight, excellent biocompatibility, diverse modifiability and inherent immunogenicity, making them highly suitable for biomedical applications. However, challenges remain in their clinical translation. This review aims to provide insights into the potential of rod-shaped plant viruses as biological nanoparticles and stimulate further research in the field of virus-based biomaterials, which may lead to innovative solutions in drug delivery, immune-related therapies and vaccine development.
Collapse
Affiliation(s)
- Wei Qian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jingyao Han
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Jia Y, Zhu H, Cai X, Sun C, Ye Y, Cai D, Yang S, Cheng J, Gao J, Yang Y, Zeng H, Zou Q, Li J, Sun H, Wang W. Plant-Derived Immunomodulatory Nanoadjuvants for Cancer Vaccines: Current Status and Future Opportunities. Vaccines (Basel) 2025; 13:378. [PMID: 40333256 PMCID: PMC12031155 DOI: 10.3390/vaccines13040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer is a major cause of death worldwide, and vaccine administration is an effective way to stimulate immune responses in patients and to achieve preventive and therapeutic effects. Few vaccines have been used in clinical settings because they have poor immunogenicity, and it is difficult to induce a robust immune response in patients. An adjuvant is an important component of a vaccine that can enhance the intensity, speed, and duration of immune responses. The achievements of adjuvants in the production of stable, safe, and immunogenic tumor vaccines have aroused the enthusiasm of researchers. Recent results have suggested that plant-derived adjuvants have unique advantages, such as greatly improving immune responses to cancer vaccines and promoting humoral and cellular immunity with good biocompatibility and biodegradability. When these adjuvants are used in combination with vaccines, they can not only activate the immune response in vivo but can also promote cytokine secretion and accelerate dendritic cell maturation. This review focused on the application progress of plant adjuvants, including saponins, polysaccharides, flavonoids, and plant virus-like particles, and their combination with nano-delivery systems in cancer vaccines. At the same time, we have also discussed the immunomodulatory mechanisms of these adjuvants and their prospects for improving vaccine efficacy in the treatment of cancer in the future. These promising plant adjuvants may provide prospects and a research basis for the development of tumor vaccines.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing 400030, China;
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Xinyu Cai
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Dingyi Cai
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
- Department of Stomatology, The 79th Group Army Hospital of PLA, Liaoyang 111000, China
| | - Shuaifei Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jingjing Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jining Gao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Jieping Li
- Affiliated Nanhua Hospital of University of South China, Hengyang 421002, China;
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; (H.Z.); (X.C.); (C.S.); (Y.Y.); (D.C.); (S.Y.); (J.C.); (J.G.); (Y.Y.); (H.Z.); (Q.Z.)
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, China
| |
Collapse
|
3
|
Pandey A, Karmous I. Exploring the Potential of Plant-Based Nanotechnology in Cancer Immunotherapy: Benefits, Limitations, and Future Perspectives. Biol Trace Elem Res 2025; 203:1746-1763. [PMID: 38862749 DOI: 10.1007/s12011-024-04266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Reconceptualizing cancer immunotherapy can be improved if combined with plant production systems and nanotechnology. This review aims to contribute to the knowledge of plant use in nanomedicine and cancer immunotherapy. In the foreground, we outlined each of these approaches; nanomedicine, green synthesis, and immunotherapy. The benefits of plant-based nanoparticles in mending the immune systems were subsequently analyzed, with reference to the literature. The combining effects of biological and therapeutic properties of some phytochemicals and their derivatives, with targeted nanoparticles and selective immunotherapy, can enhance the delivery of drugs and antibodies, and induce antitumor immune responses, via activation of functions of neutrophils, lymphocyte cells, and natural killer cells, and macrophages, resulting in induced apoptosis and phagocytosis of tumor cells, which can improve designing immunotherapeutic strategies targeting cancer, with a larger spectrum compared to the current cytotoxic anticancer drugs commonly used in clinics. This study uncovers the mechanistic drivers of cancer immunoengineering in cancer therapy using plant-based nanomaterials, enhancing therapeutic benefits while minimizing toxic and side effects.
Collapse
Affiliation(s)
- Ashish Pandey
- Department of Radiology, Tech4Health Institute, NYU Langone Health, New York, NY, USA
| | - Ines Karmous
- Biology and Environmental Department, Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Gabes, Tunisia.
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, University of Carthage, Carthage, Tunisia.
| |
Collapse
|
4
|
Komane MD, Kayoka-Kabongo PN, Rutkowska DA. The Use of Plant Viral Nanoparticles in Cancer Biotherapy-A Review. Viruses 2025; 17:218. [PMID: 40006973 PMCID: PMC11860677 DOI: 10.3390/v17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is a major global health problem that poses significant challenges. Conventional cancer therapies often have severe side effects, necessitating the development of novel therapeutic approaches that are more effective and less toxic. The utilization of plant viral nanoparticles is one of the more promising strategies for cancer biotherapy. Plant viral nanoparticles exhibit advantageous properties, including safety, high stability, rapid production and scalability, biocompatibility and biodegradability, structural uniformity, inherent immunogenicity, ease of modification and high update efficacy as well as lower cost implications, making them attractive vehicles for health applications. Various studies have demonstrated the efficacy of plant viral nanoparticles in targeted therapeutic drug/molecule delivery, tumor imaging and immunotherapy, highlighting their potential as a versatile platform for cancer biotherapy. The drawbacks of plant viral nanoparticles include their perceived ability to induce a hypersensitive/allergic immune response, non-well-defined regulatory approval processes as well as the reluctance of pharmaceutical companies to adapt their manufacturing processes to facilitate plant-based expression. This review discusses applications of plant virus-derived nanoparticles in cancer therapeutics and prospects for translating these findings into clinical practice.
Collapse
Affiliation(s)
- Mamorake Donty Komane
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Daria Anna Rutkowska
- Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
6
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Sun S, Wang YH, Gao X, Wang HY, Zhang L, Wang N, Li CM, Xiong SQ. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11:1253048. [PMID: 37771575 PMCID: PMC10523396 DOI: 10.3389/fbioe.2023.1253048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC. In this review, we extracted data from 1,752 articles on NDDS-based treatment of BC published between 2012 and 2022 from the Web of Science Core Collection (WOSCC) database. VOSviewer, CiteSpace, and some online platforms were used for bibliometric analysis and visualization. Publication trends were initially observed: in terms of geographical distribution, China and the United States had the most papers on this subject. The highest contributing institution was Sichuan University. In terms of authorship and co-cited authorship, the most prolific author was Yu Zhang. Furthermore, Qiang Zhang and co-workers have made tremendous achievements in the field of NDDS-based BC treatment. The article titled "Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications" had the most citations. The Journal of Controlled Release was one of the most active publishers in the field. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries" was the most cited reference. We also analysed "hot" and cutting-edge research for NDDSs in BC treatment. There were nine topic clusters: "tumour microenvironment," "nanoparticles (drug delivery)," "breast cancer/triple-negative breast cancer," "combination therapy," "drug release (pathway)," "multidrug resistance," "recent advance," "targeted drug delivery", and "cancer nanomedicine." We also reviewed the core themes of research. In summary, this article reviewed the application of NDDSs in the treatment of BC.
Collapse
Affiliation(s)
- Sheng Sun
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He-yong Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Chun-mei Li
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Shao-quan Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Shahgolzari M, Venkataraman S, Osano A, Akpa PA, Hefferon K. Plant Virus Nanoparticles Combat Cancer. Vaccines (Basel) 2023; 11:1278. [PMID: 37631846 PMCID: PMC10459942 DOI: 10.3390/vaccines11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging applications. The versatility of PVNPs is evident from their ability to be tailored to transport a range of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is required to fully explore their potential and translate them into clinical applications.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anne Osano
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Paul Achile Akpa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
10
|
De S, Nguyen HM, Liljeström V, Mäkinen K, Kostiainen MA, Vapaavuori J. Potato virus A particles - A versatile material for self-assembled nanopatterned surfaces. Virology 2023; 578:103-110. [PMID: 36493505 DOI: 10.1016/j.virol.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Potato virus A (PVA) is a plant-infecting RNA virus that produces flexible particles with a high aspect ratio. PVA has been investigated extensively for its infection biology, however, its potential to serve as a nanopatterning platform remains unexplored. Here, we study the liquid crystal and interfacial self-assembly behavior of PVA particles. Furthermore, we generate nanopatterned surfaces using self-assembled PVA particles through three different coating techniques: drop-casting, drop-top deposition and flow-coating. The liquid crystal phase of PVA solution visualized by polarized optical microscopy revealed a chiral nematic phase in water, while in pH 8 buffer it produced a nematic phase. This allowed us to produce thin films with either randomly or anisotropically oriented cylindrical nanopatterns using drop-top and flow-coating methods. Overall, this study explores the self-assembly process of PVA in different conditions, establishing a starting point for PVA self-assembly research and contributing a virus-assisted fabrication technique for nanopatterned surfaces.
Collapse
Affiliation(s)
- Swarnalok De
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| | - Hoang M Nguyen
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| | - Ville Liljeström
- Nanomicroscopy Center, OtaNano, Aalto University, 00076, Espoo, Finland
| | - Kristiina Mäkinen
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, 00076, Espoo, Finland.
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland.
| |
Collapse
|
11
|
Khan SU, Khan MU, Gao Y, Khan MI, Puswal SM, Zubair M, Khan MA, Farwa R, Gao S, Ali R, Hussain N. Unique therapeutic potentialities of exosomes based nanodrug carriers to target tumor microenvironment in cancer therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Dai X, Ye Y, He F. Emerging innovations on exosome-based onco-therapeutics. Front Immunol 2022; 13:865245. [PMID: 36119094 PMCID: PMC9473149 DOI: 10.3389/fimmu.2022.865245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/29/2022] [Indexed: 01/30/2023] Open
Abstract
Exosomes, nano-sized extracellular vesicles for intercellular communications, are gaining rapid momentum as a novel strategy for the diagnosis and therapeutics of a spectrum of diseases including cancers. Secreted by various cell sources, exosomes pertain numerous functionalities from their parental cells and have enhanced stability that enable them with many features favorable for clinical use and commercialization. This paper focuses on the possible roles of exosomes in cancer therapeutics and reviews current exosome-based innovations toward enhanced cancer management and challenges that limit their clinical translation. Importantly, this paper casts insights on how cold atmospheric plasma, an emerging anticancer strategy, may aid in innovations on exosome-based onco-therapeutics toward improved control over cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- CAPsoul Medical Biotechnology Company, Ltd., Beijing, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Yongju Ye
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Fule He
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| |
Collapse
|
13
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
14
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ma Y, Commandeur U, Steinmetz NF. Three Alternative Treatment Protocols for the Efficient Inactivation of Potato Virus X. ACS APPLIED BIO MATERIALS 2021; 4:8309-8315. [DOI: 10.1021/acsabm.1c00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yifeng Ma
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92039, United States
| | - Ulrich Commandeur
- Department of Molecular Biology, RWTH-Aachen University, Aachen 52064, Germany
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92039, United States
| |
Collapse
|
17
|
Venkataraman S, Apka P, Shoeb E, Badar U, Hefferon K. Plant Virus Nanoparticles for Anti-cancer Therapy. Front Bioeng Biotechnol 2021; 9:642794. [PMID: 34976959 PMCID: PMC8714775 DOI: 10.3389/fbioe.2021.642794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and efficacious as treatments. The applications of r plant virus nanoparticles range from epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen presenting cells (APCs), which in turn elicit antigen processing and display of pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple copies of their respective capsid proteins, they present repetitive multivalent scaffolds which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable platforms for delivery and presentation of antigenic epitopes, resulting in induction of more robust immune response compared to those of their soluble counterparts. Since the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are preferrable platforms for delivery and display of self-antigens as well as otherwise weakly immunogenic antigens. These properties, in addition to their diminutive size, enable the VLPs to deliver vaccines to the draining lymph nodes in addition to promoting APC interactions. Furthermore, many plant viral VLPs possess inherent adjuvant properties dispensing with the requirement of additional adjuvants to stimulate immune activity. Some of the highly immunogenic VLPs elicit innate immune activity, which in turn instigate adaptive immunity in tumor micro-environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being mass-produced as well as being modified with antigens and drugs, therefore providing an attractive option for eliciting anti-tumor immunity. The following review explores the use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Paul Apka
- Theranostics and Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Erum Shoeb
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Genetics, University of Karachi, Karachi, Pakistan
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Iravani S, Zolfaghari B. Plant Viruses and Bacteriophages for Eco-friendly Synthesis of Nanoparticles: Recent Trends and Important Challenges. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1993837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Zolfaghari
- Pharmacognosy Department, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
20
|
Noor F, Noor A, Ishaq AR, Farzeen I, Saleem MH, Ghaffar K, Aslam MF, Aslam S, Chen JT. Recent Advances in Diagnostic and Therapeutic Approaches for Breast Cancer: A Comprehensive Review. Curr Pharm Des 2021; 27:2344-2365. [PMID: 33655849 DOI: 10.2174/1381612827666210303141416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a leading cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk factors, such as genetic and environmental factors, favor breast cancer development. This review tends to provide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic approaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data mainly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective treatment options.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ayesha Noor
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Iqra Farzeen
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Kanwal Ghaffar
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farhan Aslam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, China
| |
Collapse
|
21
|
Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target 2021; 30:151-165. [PMID: 34210232 DOI: 10.1080/1061186x.2021.1949600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanoscale engineering is one of the novel methods to cure multitudes of diseases, such as types of cancers, neurological disorders, and infectious illnesses. Viruses can play a vital role in nanoscale engineering due to their specific properties like minuscule size, high stability in different body conditions, and large-scale production. Viral-like particles (VLPs) as specific nanoscale scaffolds can encapsulate a wide range of cargos, including nucleic acids, proteins, peptides, and drugs. The Exterior portion of VLPs can be changed by genetical or chemical conjugation as well as targeting ligands or peptides. The aforementioned features of VLPs can be used in several applications, such as drug delivery, bioimaging, tissue engineering, vaccine production, and disease detection. This review article attempts to investigate appearance characteristics, modification strategies, and manufacturing methods of VLPs. Additionally, drug delivery to cancer cells as one of the VLPs applications along with different cellular uptake mechanisms of VLPs by cancer cells are chosen for investigation. This review also tries to gather most of the recent studies of drug delivery to cancer cells by VLPs.
Collapse
Affiliation(s)
- Nikta Alvandi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Rajabnejad
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeynab Taghvaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00086-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Abstract
Background
Breast cancer is one of the most challenging cancers among women which is considered one of the most lethal cancers to this date. From the time that cancer has been discovered, finding the best therapeutic method is still an ongoing process. As a novel therapeutic method, nanomedicine has brought a vast number of materials that could versatilely be used as a drug carrier. The purpose of this study is to develop a novel black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles to treat breast cancer cells.
Results
The morphology and size distribution of the nanoparticles studied by dynamic light scattering, atomic force microscopy, scanning, and transitional electron microscopy showed the spherical shape of the nanoparticles and their promising size range. Studies by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and zeta sizer confirmed the synthesis, substantial crystallinity, magnetic potential of the nanoparticles, and their satisfactory stability. The DPPH assay revealed that the obtained black pomegranate peel extract has 60% free radical scavenging activity. The cytotoxicity studies by MTT and LDH assay carried out on NIH/3T3, MBA-MB-231, and 4T1 cells confirmed that the magnetic nanoparticles had no significant cytotoxicity on the cells. However, the drug-loaded nanoparticles could significantly eradicate cancerous cells which had more efficiency comparing to free drug. Furthermore, free drug and drug-loaded nanoparticles had no toxic effect on normal cells.
Conclusion
Owing to the results achieved from this study, the novel drug-loaded nanoparticles are compatible to be used for breast cancer treatment and could potentially be used for further in vivo studies.
Collapse
|
23
|
Najeeb J, Naeem S, Nazar MF, Naseem K, Shehzad U. Green Chemistry: Evolution in Architecting Schemes for Perfecting the Synthesis Methodology of the Functionalized Nanomaterials. ChemistrySelect 2021. [DOI: 10.1002/slct.202004560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry University of Gujrat Gujrat 50700 Pakistan
| | - Sumaira Naeem
- Department of Chemistry University of Gujrat Gujrat 50700 Pakistan
| | - Muhammad F. Nazar
- Department of Chemistry Division of Science and Technology University of Education Lahore Multan Campus- 60700 Lahore Pakistan
| | - Khalida Naseem
- Department of Chemistry Faculty of Science University of Central Punjab Lahore Pakistan
| | - Usman Shehzad
- Electrical Engineering Section Pakistan Meteorological Department Government of Pakistan Pakistan
| |
Collapse
|
24
|
Synthesis and cytotoxicity evaluation of gemcitabine-tobacco mosaic virus conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Wu Y, Li J, Shin HJ. Self-assembled Viral Nanoparticles as Targeted Anticancer Vehicles. BIOTECHNOL BIOPROC E 2021; 26:25-38. [PMID: 33584104 PMCID: PMC7872722 DOI: 10.1007/s12257-020-0383-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Viral nanoparticles (VNPs) comprise a variety of mammalian viruses, plant viruses, and bacteriophages, that have been adopted as building blocks and supra-molecular templates in nanotechnology. VNPs demonstrate the dynamic, monodisperse, polyvalent, and symmetrical architectures which represent examples of such biological templates. These programmable scaffolds have been exploited for genetic and chemical manipulation for displaying of targeted moieties together with encapsulation of various payloads for diagnosis or therapeutic intervention. The drug delivery system based on VNPs offer diverse advantages over synthetic nanoparticles, including biocompatibility, biodegradability, water solubility, and high uptake capability. Here we summarize the recent progress of VNPs especially as targeted anticancer vehicles from the encapsulation and surface modification mechanisms, involved viruses and VNPs, to their application potentials.
Collapse
Affiliation(s)
- Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Hyun-Jae Shin
- Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, 61452 Korea
| |
Collapse
|
26
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|
27
|
Shi J, Zhu Y, Li M, Ma Y, Liu H, Zhang P, Fang D, Guo Y, Xu P, Qiao Y. Establishment of a novel virus-induced virulence effector assay for the identification of virulence effectors of plant pathogens using a PVX-based expression vector. MOLECULAR PLANT PATHOLOGY 2020; 21:1654-1661. [PMID: 33029873 PMCID: PMC7694669 DOI: 10.1111/mpp.13000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens deliver virulence effectors into plant cells to modulate plant immunity and facilitate infection. Although species-specific virulence effector screening approaches have been developed for several pathogens, these assays do not apply to pathogens that cannot be cultured and/or transformed outside of their hosts. Here, we established a rapid and parallel screening assay, called the virus-induced virulence effector (VIVE) assay, to identify putative effectors in various plant pathogens, including unculturable pathogens, using a virus-based expression vector. The VIVE assay uses the potato virus X (PVX) vector to transiently express candidate effector genes of various bacterial and fungal pathogens into Nicotiana benthamiana leaves. Using the VIVE assay, we successfully identified Avh148 as a potential virulence effector of Phytophthora sojae. Plants infected with PVX carrying Avh148 showed strong viral symptoms and high-level Avh148 and viral RNA accumulation. Analysis of P. sojae Avh148 deletion mutants and soybean hairy roots overexpressing Avh148 revealed that Avh148 is required for full pathogen virulence. In addition, the VIVE assay was optimized in N. benthamiana plants at different developmental stages across a range of Agrobacterium cell densities. Overall, we identified six novel virulence effectors from seven pathogens, thus demonstrating the broad effectiveness of the VIVE assay in plant pathology research.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yuanhong Zhu
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Ming Li
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yuqing Ma
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Huarong Liu
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Peng Zhang
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
- College of AgricultureYangtze UniversityJingzhouChina
| | | | - Yushuang Guo
- Laboratory of Molecular GeneticsChina National Tobacco CorporationGuizhou Institute of Tobacco ScienceGuiyangChina
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular SciencesCollege of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
28
|
Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1629. [PMID: 32249552 DOI: 10.1002/wnan.1629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023]
Abstract
Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Department, Agricultural Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
29
|
Abstract
Breast cancer (BC) is one of the most common lethal diseases found in women; in which shortcomings of currently used treatment procedures and efficiency to target disease contribute to the increment in mortality. Despite other factors, exosomes, a major class of EVs (extracellular vesicles) also play a regulatory role in normal physiological processes and have a major function in proliferation, metastases, and resistance in BC. Interestingly, despite their role in the progression of BC, exosomes also showed their importance as a drug carrier in the targeted drug delivery. The present review aims to shed light on the role of exosomes as a potential nano-therapeutic vehicle in the targeted drug delivery for BC. Information for this review was searched from PubMed and Google Scholar mostly during the year 2019-2020 by using appropriate keywords. The exosomes have been efficiently used in cancer therapeutics where these nano vehicles having specific markers help in efficient targeted delivery of therapeutics including proteins, nucleic acid, and anti-cancer drugs to BC cells. The properties of exosomes as an efficient delivery system can be explored in the future and holds the potential to be used in other forms of cancer as well.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Krishna Kumar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| |
Collapse
|
30
|
Jia J, Guo S, Zhang D, Tian X, Xie X. Exosomal-lncRNA DLEU1 Accelerates the Proliferation, Migration, and Invasion of Endometrial Carcinoma Cells by Regulating microRNA-E2F3. Onco Targets Ther 2020; 13:8651-8663. [PMID: 32904666 PMCID: PMC7457553 DOI: 10.2147/ott.s262661] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) may act as oncogenes in several cancers, including endometrial carcinoma (EC). The purpose of the current study is to investigate the regulatory mechanism of exosomal-lncRNA deleted in lymphocytic leukemia1 (DLEU1) on EC. Methods The expression levels of lncRNA DLEU1, microRNA-381-3p and E2F Transcription Factor 3 (E2F3) in EC tissues or cells were detected using quantitative reverse transcription–polymerase chain reaction (qRT-PCR). We then analysed the proliferation, migration, and invasion of EC cells by performing the MTT assay, wound healing assay, and transwell invasion assay, respectively. Identification of exosomes was detected using Western blot assay. The uptake of exosomes was detected by a confocal microscope. The effects of exosomes on EC cells were investigated by construction of cell co-culture system. The interactions among DLEU1, miR-381-3p and E2F3 were confirmed using the dual-luciferase reporter (DLR) assay. Results LncRNA DLEU1 expression was highly up-regulated in EC tissues and cells. Knockdown of DLEU1 inhibited the proliferation, migration, and invasion of EC cells. Exosomes could be uptaken by the ambient EC cells. MiR-381-3p was a target of DLEU1 and was negatively modulated by DLEU1. Overexpression of miR-381-3p suppressed the proliferation, migration, and invasion of EC cells. Additionally, E2F3 was the target gene of miR-381-3p and was negatively modulated by miR-381-3p. Upregulation of miR-381-3p and down-regulation of E2F3 reversed the promoting effect of exosomal DLEU1 on EC cells. Conclusion Exosomal DLEU1 accelerates the development of EC by regulating the miR-381-3p/E2F3 axis, thus DLEU1 may act as a possible therapeutic target for treating EC.
Collapse
Affiliation(s)
- Jianjun Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou City, Guangdong Province 510632, People's Republic of China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou City, Guangdong Province, People's Republic of China
| | - Dong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou City, Guangdong Province 510632, People's Republic of China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen City, Guangdong Province, People's Republic of China
| | - Xingmei Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou City, Guangdong Province 510632, People's Republic of China
| |
Collapse
|
31
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
32
|
Park J, Chariou PL, Steinmetz NF. Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjug Chem 2020; 31:1408-1416. [PMID: 32281790 PMCID: PMC8085887 DOI: 10.1021/acs.bioconjchem.0c00118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amine/thiol-reactive chemistries are commonly used to conjugate antibodies to pharmaceuticals or nanoparticles. Yet, these conjugation strategies often result in unfavorable outcomes such as heterogeneous antibody display with hindered biological activity or aggregation due to multivalent interactions of the antibody and nanoparticles. Here, we report the application of a site-specific and enzymatically driven antibody conjugation strategy to functionalize virus-based nanoparticles (VNPs). Specifically, an azide-handle was introduced into the Fc region of a set of immunoglobulins using a two-step enzymatic reaction: (1) cleavage of N-linked glycan in the Fc region by a glycosidase and (2) conjugation of a chemically reactive linker (containing an azide functional handle) using a microbial transglutaminase. Conjugation of the azide-functional antibodies to several VNPs was achieved by making use of strain-promoted azide-alkyne cycloaddition. We report the conjugation of three immunoglobulin (IgG) isotypes (human IgG from sera, anti-CD47 Rat IgG2a, κ, and Trastuzumab recombinant humanized IgG1, κ) to the plant virus cowpea mosaic virus (CPMV) and the lysine mutant of tobacco mosaic virus (TMVlys) as well as bacteriophage Qβ. Site-specific conjugation resulted in stable and functional antibody-VNP conjugates. In stark contrast, the use of heterobifunctional linkers targeting thiols and amines on the antibodies and VNPs, respectively, led to aggregation due to nonspecific and multivalent coupling between the antibodies and VNPs. We demonstrate that antibody-VNP conjugates were functional, and Trastuzumab-displaying VNPs targeted HER2-positive SKOV-3 human ovarian cancer cells. This bioconjugation strategy adds to the portfolio of methods that can be used for designing functional antibody-VNP conjugates.
Collapse
|
33
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
34
|
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
- College of Life ScienceJiang Han University Wuhan 430056 China
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
35
|
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 2019; 69:226-237. [PMID: 31704145 DOI: 10.1016/j.semcancer.2019.10.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is amongst the most lethal cancer among females and conventional treatment methods like surgery, radiotherapy and chemotherapy are not effective enough as expected and suffer concerns of low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. Gene therapy using free nucleic acids has potential to deal with key candidate genes of BC, but their effect is retarded due to poor cell uptake and instability in circulation. The rapidly evolving field of nanomedicine aiming targeted drug/gene delivery curtailing BC promises to overcome the limitations of conventional therapies. Nanoparticles can be game changer for BC gene therapy as they can be effective carrier of specific drug/gene by improving the circulation time, enhancing bioavailability, reducing the immune system based recognition chances, and delivering the gene regulator accurately. Herein, we discuss the mechanism of nanoparticles targeted drug delivery, recent advancement of therapeutic strategies of nanoparticles based carriers for small interfering RNA, and microRNA, and gene augmentation therapies in BC. We also discuss the future prospect and challenges of nanoparticle-based therapies for BC.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sajjad Karim
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Amoozadeh S, Hemmati M, Farajollahi MM, Akbari N, Tarighi P. Preparation of Diphtheria and Pseudomonas Exotoxin A Immunotoxins and Evaluation of Their Cytotoxicity Effect on SK-BR-3, BT-474, and MDA-MB-231 Breast Cancer Cell Lines. Cancer Invest 2019; 37:546-557. [PMID: 31597492 DOI: 10.1080/07357907.2019.1655761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/10/2019] [Indexed: 01/14/2023]
Abstract
Immunotoxin targeted therapy is a promising way of cancer therapy that is made from a toxin attached to an antibody which target a specific protein presented on cancer cells. In this study, we introduce immunotoxins comprising of truncated pseudomonas exotoxin A (PEA) and diphtheria toxin (DT) conjugated to trastuzumab. The effectiveness of 20 and 30 μg/ml immunotoxins and trastuzumab were studied on SK-BR-3 and BT-474 HER2/neu positive breast cancer cell lines by a cell death assay test. The produced immunotoxins have the potential to reduce the therapeutic dose of the trastuzumab and in the same time achieve higher efficiency.
Collapse
Affiliation(s)
- Sahel Amoozadeh
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Morad Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Cai H, Wang C, Shukla S, Steinmetz NF. Cowpea Mosaic Virus Immunotherapy Combined with Cyclophosphamide Reduces Breast Cancer Tumor Burden and Inhibits Lung Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802281. [PMID: 31453050 PMCID: PMC6702650 DOI: 10.1002/advs.201802281] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Indexed: 05/10/2023]
Abstract
Patients with metastatic triple-negative breast cancer (TNBC) have a poor prognosis, so new therapies or drug combinations that achieve more effective and durable responses are urgently needed. Here, a combination therapy using cowpea mosaic virus (CPMV) and low doses of cyclophosphamide (CPA) is developed with remarkable synergistic efficacy against 4T1 mouse tumors in vivo. The combination therapy not only attenuates the growth of primary tumor and increases survival, but also suppresses distant tumor growth and reduces lung metastasis. Mechanistic analysis indicates that the combination of CPMV and CPA increases the secretion of several cytokines, activates antigen-presenting cells, increases the abundance of tumor infiltrating T cells, and systematically reverses the immunosuppression. These results show that the combination of CPMV in situ vaccination with chemotherapy may become a potent new strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Hui Cai
- Department of NanoEngineering/Department of Radiology/Moores Cancer Center/Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| | - Chao Wang
- Department of NanoEngineering/Department of Radiology/Moores Cancer Center/Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| | - Sourabh Shukla
- Department of NanoEngineering/Department of Radiology/Moores Cancer Center/Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering/Department of Radiology/Moores Cancer Center/Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| |
Collapse
|
38
|
Abstract
Immunotherapy potentiates a patient’s immune response against some forms of cancer, including malignant tumors. In this Special Report, we have summarized the use of nanoparticles that have been designed for use in cancer immunotherapy with particular emphasis on plant viruses. Plant virus-based nanoparticles are an ideal choice for therapeutic applications, as these nanoparticles are not only capable of targeting the desired cells but also of being safely delivered to the body without posing any threat of infection. Plant viruses can be taken up by tumor cells and can be functionalized as drug delivery vehicles. This Special Report describes how the future of cancer immunotherapy could be a success through the merger of computer-based technology using plant-virus nanoparticles. The nonpathogenic nature of plant viral nanoparticles makes them an ideal choice for therapeutic applications such as cancer. Understanding the molecular mechanisms behind the immune response to cancer has facilitated the use of nanotechnology as an effective cancer therapy. Biologically active self-replicating plant virus particles can be introduced to the bloodstream of the human body and used as effective drug delivery vehicles. This Special Report describes how a combination of computer-based technology and plant-virus nanoparticles can assist in cancer immunotherapy.
Collapse
|
39
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
40
|
Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871:419-433. [PMID: 31034927 PMCID: PMC6549504 DOI: 10.1016/j.bbcan.2019.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been discovered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
Collapse
Affiliation(s)
- Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Cagri Y Oztan
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Emrah Celik
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
41
|
Röder J, Dickmeis C, Commandeur U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. FRONTIERS IN PLANT SCIENCE 2019; 10:158. [PMID: 30838013 PMCID: PMC6390637 DOI: 10.3389/fpls.2019.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an expanding interdisciplinary field concerning the development and application of nanostructured materials derived from inorganic compounds or organic polymers and peptides. Among these latter materials, proteinaceous plant virus nanoparticles have emerged as a key platform for the introduction of tailored functionalities by genetic engineering and conjugation chemistry. Tobacco mosaic virus and Cowpea mosaic virus have already been developed for bioimaging, vaccination and electronics applications, but the flexible and filamentous Potato virus X (PVX) has received comparatively little attention. The filamentous structure of PVX particles allows them to carry large payloads, which are advantageous for applications such as biomedical imaging in which multi-functional scaffolds with a high aspect ratio are required. In this context, PVX achieves superior tumor homing and retention properties compared to spherical nanoparticles. Because PVX is a protein-based nanoparticle, its unique functional properties are combined with enhanced biocompatibility, making it much more suitable for biomedical applications than synthetic nanomaterials. Moreover, PVX nanoparticles have very low toxicity in vivo, and superior pharmacokinetic profiles. This review focuses on the production of PVX nanoparticles engineered using chemical and/or biological techniques, and describes current and future opportunities and challenges for the application of PVX nanoparticles in medicine, diagnostics, materials science, and biocatalysis.
Collapse
Affiliation(s)
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|
43
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
44
|
Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces 2018; 167:20-27. [PMID: 29625419 DOI: 10.1016/j.colsurfb.2018.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Nanoparticles have been gained much attention for biomedical applications. A promising type of nanocarriers is viral nanoparticles (VNPs) which are natural bio-nanomaterials derived from different type of viruses. Amongst VNPs, plant VNPs present several pros over general nanoparticles such as liposomes, dendrimers or quantum dots. Some of these advantages include: degradability, safety for human, known structures to atomic level, possibility of attaching ligand with vigorous control on structure, availability for genetic and chemical manipulations and very flexible methods to prepare them. Variety of plant viruses have been modified by chemical and genetic modification of their inner cavities and their outer-surfaces. These modifications provide suitable sites for attachment of markers and drug molecules for vascular imaging and tumor targeting. In this review a brief description of plant virus nanoparticles and their biomedical applications especially in drug delivery is provided. The methods of loading cargos in these VNPs and their final biofate are also reviewed.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dehshahri
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keramatolah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Hefferon KL. Repurposing Plant Virus Nanoparticles. Vaccines (Basel) 2018; 6:vaccines6010011. [PMID: 29443902 PMCID: PMC5874652 DOI: 10.3390/vaccines6010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Plants have been explored for many years as inexpensive and versatile platforms for the generation of vaccines and other biopharmaceuticals. Plant viruses have also been engineered to either express subunit vaccines or act as epitope presentation systems. Both icosahedral and helical, filamentous-shaped plant viruses have been used for these purposes. More recently, plant viruses have been utilized as nanoparticles to transport drugs and active molecules into cancer cells. The following review describes the use of both icosahedral and helical plant viruses in a variety of new functions against cancer. The review illustrates the breadth of variation among different plant virus nanoparticles and how this impacts the immune response.
Collapse
|
46
|
Esfandiari N, Arzanani MK, Koohi-Habibi M. The study of toxicity and pathogenicity risk of Potato Virus X/Herceptin nanoparticles as agents for cancer therapy. Cancer Nanotechnol 2018. [DOI: 10.1186/s12645-018-0036-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Madden AJ, Oberhardt B, Lockney D, Santos C, Vennam P, Arney D, Franzen S, Lommel SA, Miller CR, Gehrig P, Zamboni WC. Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine (Lond) 2017; 12:2519-2532. [PMID: 28952882 DOI: 10.2217/nnm-2016-0421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To compare the pharmacokinetics and efficacy of doxorubicin containing plant virus nanoparticles (PVNs) with PEGylated liposomal doxorubicin (PLD) and small molecule doxorubicin in two mouse models of cancer. MATERIALS & METHODS Studies were performed in A375 melanoma and intraperitoneal SKOV3ip1 ovarian cancer xenografts. The PVNs were administered in lower and more frequent doses in the ovarian model. RESULTS The PVNs were more efficacious than PLD and small molecule doxorubicin in the ovarian cancer model, but not in the melanoma cancer model. The pharmacokinetics profiles of the PVNs showed fast plasma clearance, but more efficient tumor delivery as compared with other carrier-mediated agents. CONCLUSION PVNs administered at lower repeated doses provide both pharmacologic and efficacy advantages compared with PLD.
Collapse
Affiliation(s)
- Andrew J Madden
- Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | | | | | - Charlene Santos
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Stefan Franzen
- Nanovector Inc., Raleigh, NC, USA.,Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Steven A Lommel
- Nanovector Inc., Raleigh, NC, USA.,Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology & Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Gehrig
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Obstetrics & Gynecology, Division of Gynecology Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
49
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
50
|
Sheshukova EV, Komarova TV, Dorokhov YL. Plant factories for the production of monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:1118-1135. [DOI: 10.1134/s0006297916100102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|