1
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
2
|
Guo Y, Lu X, Zhou Y, Chen WH, Tam KY. Combined inhibition of pyruvate dehydrogenase kinase 1 and hexokinase 2 induces apoptsis in non-small cell lung cancer cell models. Exp Cell Res 2023; 433:113830. [PMID: 37913974 DOI: 10.1016/j.yexcr.2023.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Many cancer cells exhibit enhanced glycolysis, which is seen as one of the hallmark metabolic alterations, known as Warburg effect. Substantial evidence shows that upregulated glycolytic enzymes are often linked to malignant growth. Using glycolytic inhibitors for anticancer treatment has become appealing in recent years for therapeutic intervention in cancers with highly glycolytic characteristic, including non-small cell lung cancer (NSCLC). In this work, we studied the anticancer effects and the underlying mechanisms of combination of benzerazide hydrocholoride (Benz), a hexokinase 2 (HK2) inhibitor and 64, a pyruvate dehydrogenase kinase 1 (PDK1) inhibitor, in several NSCLC cell lines. We found that combination of Benz and 64 exhibited strong synergistic anticancer effects in NCI-H1975, HCC827, NCI-H1299 and SK-LU-1 cell lines. With this combination treatment, we observed changes of certain mechanistic determinants associated with metabolic stress caused by glycolysis restriction, such as mitochondrial membrane potential depolarization, overproduction of reactive oxygen species [1], activation of AMPK and down-regulation of mTOR, which contributed to enhanced apoptosis. Moreover, Benz and 64 together significantly suppressed the tumor growth in HCC827 cell mouse xenograft model. Taken together, our study may suggest that combined inhibition of HK2 and PDK1 using Benz and 64 could be a viable anticancer strategy for NSCLC.
Collapse
Affiliation(s)
- Yizhen Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Xianchen Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, PR China
| | - Yan Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, PR China.
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
3
|
Liu Q, Bode AM, Chen X, Luo X. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:189023. [PMID: 37979733 DOI: 10.1016/j.bbcan.2023.189023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
4
|
Huang H, Li S, Tang Q, Zhu G. Metabolic Reprogramming and Immune Evasion in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:680955. [PMID: 34566954 PMCID: PMC8458828 DOI: 10.3389/fimmu.2021.680955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the nasopharynx mainly characterized by geographic distribution and EBV infection. Metabolic reprogramming, one of the cancer hallmarks, has been frequently reported in NPCs to adapt to internal energy demands and external environmental pressures. Inevitably, the metabolic reprogramming within the tumor cell will lead to a decreased pH value and diverse nutritional supplements in the tumor-infiltrating micro-environment incorporating immune cells, fibroblasts, and endothelial cells. Accumulated evidence indicates that metabolic reprogramming derived from NPC cells may facilitate cancer progression and immunosuppression by cell-cell communications with their surrounding immune cells. This review presents the dysregulated metabolism processes, including glucose, fatty acid, amino acid, nucleotide metabolism, and their mutual interactions in NPC. Moreover, the potential connections between reprogrammed metabolism, tumor immunity, and associated therapy would be discussed in this review. Accordingly, the development of targets on the interactions between metabolic reprogramming and immune cells may provide assistances to overcome the current treatment resistance in NPC patients.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Zhang X, Song X, Lai Y, Zhu B, Luo J, Yu H, Yu Y. Identification of key pseudogenes in nasopharyngeal carcinoma based on RNA-Seq analysis. BMC Cancer 2021; 21:483. [PMID: 33931030 PMCID: PMC8088053 DOI: 10.1186/s12885-021-08211-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor, and more than 70% of new cases are in East and Southeast Asia. However, association between NPC and pseudogenes playing important roles in genesis of multiple tumor types is still not clear and needs to be investigated. METHODS Using RNA-Sequencing (RNA-seq) technology, we analyzed pseudogene expression in 13 primary NPC and 6 recurrent NPC samples as well as their paracancerous counterparts. Quantitative PCR was used to validate the differentially expressed pseudogenes. RESULTS We found 251 differentially expressed pseudogenes including 73 up-regulated and 178 down-regulated ones between primary NPC and paracancerous tissues. Enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted to filter out the key pseudogenes. We reported that pseudogenes from cytochrome P450 (CYP) family, such as CYP2F2P, CYP2G1P, CYP4F24P, CYP2B7P and CYP2G2P were significantly down-regulated in NPC compared to paracancerous tissues, while IGHV1OR15-2, IGHV3-11, FCGR1CP and IGHV3-69-1 belonging to Fc gamma receptors were significantly up-regulated. CYP2B7P, CYP2F2P and CYP4F26P were enriched in arachidonic acid metabolism pathway. The qRT-PCR analysis validated the lower expression of pseudogenes CYP2F2P and CYP2B7P in NPC tissues and cell lines compared to paracancerous tissues and normal human nasopharyngeal epithelial cell line. CYP2B7P overexpression weakened migratory and invasive capacity of NPC cell line. Moreover, the expression pattern of those pseudogenes in recurrent NPC tissues was different from the primary NPC. CONCLUSION This study suggested the role of pseudogenes in tumorigenesis and progression, potentially functioning as therapeutic targets to NPC.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Xiaole Song
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Yuting Lai
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Bijun Zhu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Jiqin Luo
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China. .,Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Saidijam M, Afshar S, Taherkhani A. Identifying Potential Biomarkers in Colorectal Cancer and Developing Non-invasive Diagnostic Models Using Bioinformatics Approaches. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most frequent causes of gastrointestinal tumors. Due to the invasiveness of the current diagnostic methods, there is an urgent need to develop non-invasive diagnostic approaches for CRC. The exact mechanisms and the most important genes associated with the development of CRC are not fully demonstrated. Objectives: This study aimed to identify differentially expressed miRNAs (DEMs), key genes, and their regulators associated with the pathogenesis of CRC. The signaling pathways and biological processes (BPs) that were significantly affected in CRC were also indicated. Moreover, two non-invasive models were constructed for CRC diagnosis. Methods: The miRNA dataset GSE59856 was downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify DEMs in CRC patients compared with healthy controls (HCs). A protein-protein interaction (PPI) network was built and analyzed. Significant clusters in the PPI networks were identified, and the BPs and pathways associated with these clusters were studied. The hub genes in the PPI network, as well as their regulators were identified. Results: A total of 569 DEMs were demonstrated with the criteria of P value <0.001. A total of 110 essential genes and 30 modules were identified in the PPI network. Functional analysis revealed that 1005 BPs, 9 molecular functions (MFs), 14 cellular components (CCs), and 887 pathways were significantly affected in CRC. A total of 22 transcription factors (TFs) were demonstrated as the regulators of the hubs. Conclusion: Our results may provide new insight into the pathogenesis of CRC and advance the diagnostic and therapeutic methods of the disease. However, confirmation is required in the future.
Collapse
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
SDHC-related deficiency of SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFκB signaling. Cancer Lett 2019; 461:44-55. [DOI: 10.1016/j.canlet.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
|
8
|
The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Sci Rep 2019; 9:12973. [PMID: 31506552 PMCID: PMC6736869 DOI: 10.1038/s41598-019-49480-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
As a key glycolysis enzyme, the significance of pyruvate dehydrogenase kinase 1 (PDK1) in the development of colorectal cancer (CRC) remains unknown. This study revealed that the prognosis of CRC patients with high levels of PDK1 was poor, and PDK1 knockdown significantly reduced liver metastasis of CRC in both nude mice and immune competent BALB/C mice. When combined with cryptotanshinone (CPT), an inhibitor of STAT3-p-Y705, the liver metastasis was further inhibited. PDK1 knockdown obviously increased reactive oxygen species level in anoikis conditions and subsequently resulted in an elevated anoikis, but the combination of PDK1 knockdown and CPT showed a reduced effect on anoikis. Based on this discrepancy, the adherence ability of CRC cells to matrix protein fibronectin was further detected. It showed that PDK1 knockdown significantly decreased the adherence of CRC cells to fibronectin when combined with CPT. These results suggest that inhibition of PDK1 can decrease the surviving CRC cells in blood circulation via up-regulation of anoikis, and inhibition of STAT3-p-Y705 can prevent it to settle down on the liver premetastatic niche, which ultimately reduces liver metastasis.
Collapse
|
9
|
Yu M, Chen S, Hong W, Gu Y, Huang B, Lin Y, Zhou Y, Jin H, Deng Y, Tu L, Hou B, Jian Z. Prognostic role of glycolysis for cancer outcome: evidence from 86 studies. J Cancer Res Clin Oncol 2019; 145:967-999. [PMID: 30825027 DOI: 10.1007/s00432-019-02847-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The abnormal expression of the key enzymes in glycolytic pathways, including glucose transporter-1, glucose transporter-3, hexokinase-II, lactate dehydrogenase 5, pyruvate kinase M2, glucose-6-phosphate dehydrogenase, transketolase-like protein 1 and pyruvate dehydrogenase kinase-1 was reported to be associated with poor prognosis of various cancers. However, the association remains controversial. The objective of this study was to investigate the prognostic significance of glycolysis-related proteins. MATERIALS AND METHODS We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, using Pubmed and Ovid as search engines and Google Scholar from inception to April 2017. Eighty-six studies with 12,002 patients were included in the study. RESULTS Our pooled results identified that glycolysis-related proteins in cancers were associated with shorter overall survival of colorectal cancer (HR 2.33, 95% CI 1.38-3.93, P = 0.002), gastric cancer (HR 1.55, 95% CI 1.31-1.82, P < 0.001), cancer of gallbladder or bile duct (HR 2.16, 95% CI 1.70-2.75, P < 0.001), oral cancer (HR 2.07, 95% CI 1.32-3.25, P < 0.001), esophageal cancer (HR 1.66, 95% CI 1.25-2.21, P = 0.01), hepatocellular carcinoma (HR 2.04, 95% CI 1.64-2.54, P < 0.001), pancreatic cancer (HR 1.72, 95% CI 1.39-2.13, P < 0.001), breast cancer(HR 1.67, 95% CI 1.34-2.08, P < 0.001), and nasopharyngeal carcinoma (HR 3.59, 95% CI 1.75-7.36, P < 0.001). No association was found for lung cancer, ovarian cancer or melanoma. The key glycolytic transcriptional regulators (HIF-1α, p53) were analyzed in parallel to the glycolysis-related proteins, and the pooled results identified that high-level expression of HIF-1α was significantly associated with shorter overall survival (HR 0.57, 95% CI 0.42-0.79, P < 0.001) Furthermore, glycolysis-related proteins linked with poor differentiated tumors (OR 1.81, 95% CI 1.46-2.25, P < 0.001), positive lymph node metastasis (OR 2.73, 95% CI 2.16-3.46, P < 0.001), positive vascular invasion (OR 2.05, 95% CI 1.37-3.07, P < 0.001), large tumor size (OR 2.06, 95% CI 1.80-2.37, P < 0.001), advanced tumor stage (OR 1.58, 95% CI 1.19-2.09, P < 0.001), and deeper invasion (OR 2.37, 95% CI 1.93-2.91, P < 0.001). CONCLUSION Glycolytic transcriptional regulators and glycolysis-related proteins in cancers were significantly associated with poor prognosis, suggesting glycolytic status may be potentially valuable prognostic biomarkers for various cancers.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Shengying Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Weifeng Hong
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Yujun Gu
- The Second Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yanying Deng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lei Tu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Golias T, Kery M, Radenkovic S, Papandreou I. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer 2018; 144:674-686. [PMID: 30121950 DOI: 10.1002/ijc.31812] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
During malignant progression cancer cells undergo a series of changes, which promote their survival, invasiveness and metastatic process. One of them is a change in glucose metabolism. Unlike normal cells, which mostly rely on the tricarboxylic acid cycle (TCA), many cancer types rely on glycolysis. Pyruvate dehydrogenase complex (PDC) is the gatekeeper enzyme between these two pathways and is responsible for converting pyruvate to acetyl-CoA, which can then be processed further in the TCA cycle. Its activity is regulated by PDP (pyruvate dehydrogenase phosphatases) and PDHK (pyruvate dehydrogenase kinases). Pyruvate dehydrogenase kinase exists in 4 tissue specific isoforms (PDHK1-4), the activities of which are regulated by different factors, including hormones, hypoxia and nutrients. PDHK1 and PDHK3 are active in the hypoxic tumor microenvironment and inhibit PDC, resulting in a decrease of mitochondrial function and activation of the glycolytic pathway. High PDHK1/3 expression is associated with worse prognosis in patients, which makes them a promising target for cancer therapy. However, a better understanding of PDC's enzymatic regulation in vivo and of the mechanisms of PDHK-mediated malignant progression is necessary for the design of better PDHK inhibitors and the selection of patients most likely to benefit from such inhibitors.
Collapse
Affiliation(s)
- Tereza Golias
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martin Kery
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Radenkovic
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and Wexner Medical Center, Columbus, OH
| |
Collapse
|
11
|
Velpula KK, Guda MR, Sahu K, Tuszynski J, Asuthkar S, Bach SE, Lathia JD, Tsung AJ. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Oncotarget 2018; 8:35639-35655. [PMID: 28410193 PMCID: PMC5482605 DOI: 10.18632/oncotarget.16767] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.
Collapse
Affiliation(s)
- Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Kamlesh Sahu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jack Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Sarah E Bach
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Justin D Lathia
- Department of Cellular and Molecular medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Illinois Neurological Institute, Peoria, IL, USA
| |
Collapse
|
12
|
Xiao Z, Liu S, Ai F, Chen X, Li X, Liu R, Ren W, Zhang X, Shu P, Zhang D. SDHB downregulation facilitates the proliferation and invasion of colorectal cancer through AMPK functions excluding those involved in the modulation of aerobic glycolysis. Exp Ther Med 2017; 15:864-872. [PMID: 29399091 PMCID: PMC5772827 DOI: 10.3892/etm.2017.5482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 02/01/2023] Open
Abstract
Loss-of-function of succinate dehydrogenase-B (SDHB) is a predisposing factor of aerobic glycolysis and cancer progression. Adenosine monophosphate activated protein kinase (AMPK) is involved in the regulation of aerobic glycolysis and the diverse hallmarks of cancer. The present study investigated whether AMPK mediated the regulatory effects of SDHB in aerobic glycolysis and cancer growth. The expression of SDHB and AMPK in colorectal cancer (CRC) and normal tissues was assessed by western blotting. HT-29 CRC cells were used to establish in vitro models of ectopic overexpression and knockdown of SDHB. SDHB was downregulated, while AMPK and phosphorylated-AMPK (Thr172) were upregulated in CRC tissues. Experiments involving the loss- or gain-of-function of SDHB, revealed that this protein negatively regulated AMPK by influencing its expression and activity. However, SDHB and AMPK were identified to suppress lactic acid production in CRC cells, indicating that each had an inhibitory effect on aerobic glycolysis. Therefore, the regulation of aerobic glycolysis by SDHB is unlikely to be mediated via AMPK. SDHB knockdown promoted the viability, migration and invasion of HT-29 cells, whereas inhibition of AMPK demonstrated the opposite effect. SDHB overexpression impaired cell migration and invasion, and this effect was reversed following AMPK activation. These results indicate that AMPK may mediate the effects of SDHB in CRC cell proliferation and migration. In conclusion, SDHB downregulation in CRC cells may increase AMPK activity, which may subsequently facilitate the proliferation and invasion of these cancer cells. However, the regulation of aerobic glycolysis by SDHB may be independent of AMPK. Further studies are warranted to elucidate the mechanism by which SDHB regulates aerobic glycolysis.
Collapse
Affiliation(s)
- Zhiming Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaojun Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| | - Xiong Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| | - Rui Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Weiguo Ren
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| | - Xuemei Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| | - Peng Shu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| | - Decai Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan 410013, P.R. China
| |
Collapse
|