1
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
2
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
3
|
Finotti A, Gasparello J, Casnati A, Corradini R, Gambari R, Sansone F. Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods Mol Biol 2021; 2211:123-143. [PMID: 33336275 DOI: 10.1007/978-1-0716-0943-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of peptide nucleic acids (PNAs) for alteration of gene expression is nowadays firmly established. PNAs are characterized by a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units and have been found to be excellent candidates for antisense and antigene therapies. Recently, PNAs have been demonstrated to alter the action of microRNAs and thus can be considered very important tools for miRNA therapeutics. In fact, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs. Among the limits of PNAs in applied molecular biology, the delivery to target cells and tissues is of key importance. The aim of this chapter is to describe methods for the efficient delivery of unmodified PNAs designed to target microRNAs involved in cancer, using as model system miR-221-3p and human glioma cells as in vitro experimental cellular system. The methods employed to deliver PNAs targeting miR-221-3p here presented are based on a macrocyclic multivalent tetraargininocalix[4]arene used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity, and easy preparation makes this vector a candidate for a universal delivery system for this class of nucleic acid analogs.
Collapse
Affiliation(s)
- Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
| | - Jessica Gasparello
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.,Interuniversity Consortium for Biotechnology, Trieste University, Trieste, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy.
| |
Collapse
|
4
|
Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. Exploring miR-9 Involvement in Ciona intestinalis Neural Development Using Peptide Nucleic Acids. Int J Mol Sci 2020; 21:ijms21062001. [PMID: 32183450 PMCID: PMC7139483 DOI: 10.3390/ijms21062001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The microRNAs are small RNAs that regulate gene expression at the post-transcriptional level and can be involved in the onset of neurodegenerative diseases and cancer. They are emerging as possible targets for antisense-based therapy, even though the in vivo stability of miRNA analogues is still questioned. We tested the ability of peptide nucleic acids, a novel class of nucleic acid mimics, to downregulate miR-9 in vivo in an invertebrate model organism, the ascidian Ciona intestinalis, by microinjection of antisense molecules in the eggs. It is known that miR-9 is a well-conserved microRNA in bilaterians and we found that it is expressed in epidermal sensory neurons of the tail in the larva of C. intestinalis. Larvae developed from injected eggs showed a reduced differentiation of tail neurons, confirming the possibility to use peptide nucleic acid PNA to downregulate miRNA in a whole organism. By identifying putative targets of miR-9, we discuss the role of this miRNA in the development of the peripheral nervous system of ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| | - Silvia Cauteruccio
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy;
- Correspondence: (S.C.); (S.C.); Tel.: +39-0250314147 (S.C.); +39-0103538051 (S.C.)
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| | - Simona Candiani
- Department of Earth Science, Environment and Life, Università degli Studi di Genova, 16132 Genova, Italy
- Correspondence: (S.C.); (S.C.); Tel.: +39-0250314147 (S.C.); +39-0103538051 (S.C.)
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Emanuela Licandro
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy; (S.M.); (R.M.); (R.P.)
| |
Collapse
|
5
|
Soudah T, Khawaled S, Aqeilan RI, Yavin E. AntimiR-155 Cyclic Peptide-PNA Conjugate: Synthesis, Cellular Uptake, and Biological Activity. ACS OMEGA 2019; 4:13954-13961. [PMID: 31497713 PMCID: PMC6714607 DOI: 10.1021/acsomega.9b01697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Efficient delivery of nucleic acids into cells still remains a great challenge. Peptide nucleic acids (PNAs) are DNA analogues with a neutral backbone and are synthesized by solid phase peptide chemistry. This allows a straightforward synthetic route to introduce a linear short peptide (a.k.a. cell-penetrating peptide) to the PNA molecule as a means of facilitating cellular uptake of PNAs. Herein, we have devised a synthetic route in which a cyclic peptide is prepared on a solid support and is extended with the PNA molecule, where all syntheses are accomplished on the solid phase. This allows the conjugation of the cyclic peptide to the PNA molecule with the need of only one purification step after the cyclic peptide-PNA conjugate (C9-PNA) is cleaved from the solid support. The PNA sequence chosen is an antimiR-155 molecule that is complementary to mature miR-155, a well-established oncogenic miRNA. By labeling C9-PNA with fluorescein isothiocyanate, we observe efficient cellular uptake into glioblastoma cells (U87MG) at a low concentration (0.5 μM), as corroborated by fluorescence-activated cell sorting (FACS) analysis and confocal microscopy. FACS analysis also suggests an uptake mechanism that is energy-dependent. Finally, the antimiR activity of C9-PNA was shown by analyzing miR155 levels by quantitative reverse transcription polymerase chain reaction and by observing a reduction in cell viability and proliferation in U87MG cells, as corroborated by XTT and colony formation assays. Given the added biological stability of cyclic versus linear peptides, this synthetic approach may be a useful and straightforward approach to synthesize cyclic peptide-PNA conjugates.
Collapse
Affiliation(s)
- Terese Soudah
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Saleh Khawaled
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Rami I. Aqeilan
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Eylon Yavin
- The
Institute for Drug Research, The School of Pharmacy,
and Lautenberg Center
for Immunology and Cancer Research, Institute for Medical Research
Israel-Canada, The Hebrew University of
Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
6
|
Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N, Mokhtarzadeh A, Baradaran B. MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. J Cell Physiol 2018; 234:2152-2168. [PMID: 30146724 DOI: 10.1002/jcp.26810] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.
Collapse
Affiliation(s)
- Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal Hg Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhu HY, Bai WD, Ye XM, Yang AG, Jia LT. Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1. Biochem Biophys Res Commun 2018; 496:1308-1313. [PMID: 29408336 DOI: 10.1016/j.bbrc.2018.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
Breast cancer resistance to the monoclonal erbB2/HER2 antibody trastuzumab (or herceptin) has become a significant obstacle in clinical targeted therapy of HER2-positive breast cancer. Previous research demonstrated that such drug resistance may be related to dysregulation of miRNA expression. Here, we found that knockdown of the long non-coding RNA, urothelial cancer associated 1 (UCA1), can promote the sensitivity of human breast cancer cells to trastuzumab. Mechanistically, UCA1 knockdown upregulated miR-18a and promoted miR-18a repression of Yes-associated protein 1 (YAP1). A luciferase reporter assay confirmed the association of miR-18a with wild-type UCA1 but not with UCA1 mutated at the predicted miR-18a-binding site. The direct targeting of YAP1 by miR-18a was verified by the observation that miR-18a mimic suppressed luciferase expression from a construct containing the YAP1 3' untranslated region. Meanwhile, reciprocal repression of UCA1 and miR-18a were found to be Argonaute 2-dependent. Knockdown of YAP1 recapitulated the effect of UCA1 silencing by reducing the viability of trastuzumab-treated breast cancer cells, whereas inhibition of miR-18a abrogated UCA1 knockdown-induced improvement of trastuzumab sensitivity in breast cancer cells. These findings demonstrate that the UCA1/miR-18a/YAP1 axis plays an important role in regulating the sensitivity of breast cancer cells to trastuzumab, which has implications for the development of novel approaches to improving breast cancer responses to targeted therapy.
Collapse
Affiliation(s)
- Hua-Yu Zhu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Dong Bai
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Clinical Laboratory Center, Xinjiang Command General Hospital of Chinese People's Liberation Army, Urumqi, Xinjiang, China
| | - Xing-Ming Ye
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular, Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - An-Gang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular, Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Jia L, Li F, Shao M, Zhang W, Zhang C, Zhao X, Luan H, Qi Y, Zhang P, Liang L, Jia X, Zhang K, Lu Y, Yang Z, Zhu X, Zhang Q, Du J, Wang W. IL-8 is upregulated in cervical cancer tissues and is associated with the proliferation and migration of HeLa cervical cancer cells. Oncol Lett 2017; 15:1350-1356. [PMID: 29399185 DOI: 10.3892/ol.2017.7391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/22/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin-8 (IL-8) serves an important function in chronic inflammation and cancer development; however, the underlying molecular mechanism(s) of IL-8 in uterine cervical cancer remains unclear. The present study investigated whether IL-8 and its receptors [IL-8 receptor (IL-8R)A and IL-8RB] contributed to the proliferative and migratory abilities of HeLa cervical cancer cells, and also investigated the potential underlying molecular mechanisms. Results demonstrated that IL-8 and its receptors were detected in HeLa cells, and levels of IL-8RA were significantly increased compared with those of IL-8RB. Furthermore, the level of IL-8 in cervical cancer tissues was significantly increased compared with that in normal uterine cervical tissues, and migratory and proliferative efficiencies of HeLa cells treated with exogenous IL-8 were increased, compared with untreated HeLa cells. In addition, exogenous IL-8 was able to downregulate endocytic adaptor protein (NUMB), and upregulate IL-8RA, IL-8RB and extracellular signal-regulated protein kinases (ERKs) expression levels in HeLa cells. Results suggest that IL-8 and its receptors were associated with the tumorigenesis of uterine cervical cancer, and exogenous IL-8 promotes the carcinogenic potential of HeLa cells by increasing the expression levels of IL-8RA, IL-8RB and ERK, and decreasing the expression level of NUMB.
Collapse
Affiliation(s)
- Linlin Jia
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Fengying Li
- Department of Obstetrics and Gynecology, Maternity and Infant Hospital of Jiamusi, Jiamusi, Heilongjiang 154002, P.R. China
| | - Mingliang Shao
- Department of Interventional Medicine, The Fifth Hospital, Shijiazhuang, Hebei 050021, P.R. China
| | - Wei Zhang
- Department of Interventional Medicine, The Fifth Hospital, Shijiazhuang, Hebei 050021, P.R. China
| | - Chunbin Zhang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xiaolian Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Haiyan Luan
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yaling Qi
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Pengxia Zhang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Lichun Liang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xiuyue Jia
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Kun Zhang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yan Lu
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Zhe Yang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xiulin Zhu
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qi Zhang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jiwei Du
- Nursing Department, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weiqun Wang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|