1
|
Prasad S, Singh A, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Dysregulated brain regulatory T cells fail to control reactive gliosis following repeated antigen stimulation. iScience 2023; 26:106628. [PMID: 37192971 PMCID: PMC10182273 DOI: 10.1016/j.isci.2023.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1β, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amar Singh
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Schulze Diabetes Institute Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wen S. Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James R. Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Corresponding author
| |
Collapse
|
2
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
3
|
Puglisi R, Bellenghi M, Pontecorvi G, Pallante G, Carè A, Mattia G. Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:2875. [PMID: 34207514 PMCID: PMC8228007 DOI: 10.3390/cancers13122875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cutaneous Melanoma classification is constantly looking for specific and sensitive biomarkers capable of having a positive effect on diagnosis, prognosis and risk assessment, eventually affecting clinical outcome. Classical morphological, immunohistochemical and the well-known BRAF and NRAS genetic biomarkers do not allow the correct categorization of patients, being melanoma conditioned by high genetic heterogeneity. At the same time, classic prognostic methods are unsatisfactory. Therefore, new advances in omics and high-throughput analytical techniques have enabled the identification of numerous possible biomarkers, but their potentiality needs to be validated and standardized in prospective studies. Melanoma is considered an immunogenic tumor, being the first form of cancer to take advantage of the clinical use of the immune-checkpoint blockers. However, as immunotherapy is effective only in a limited number of patients, biomarkers associated with different responses are essential to select the more promising therapeutic approach and maximize clinical benefits. In this review, we summarize the most utilized biomarkers for Cutaneous Melanoma diagnosis, focusing on new prognostic and predictive biomarkers mainly associated with immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Carè
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.P.); (M.B.); (G.P.); (G.P.); (G.M.)
| | | |
Collapse
|
4
|
Lee HK, Shin HJ, Koo J, Kim TH, Kim CW, Go RE, Seong YH, Park JE, Choi KC. Blockade of transforming growth factor β2 by anti-sense oligonucleotide improves immunotherapeutic potential of IL-2 against melanoma in a humanized mouse model. Cytotherapy 2021; 23:599-607. [PMID: 33975794 DOI: 10.1016/j.jcyt.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS IL-2 is a potent cytokine that activates natural killer cells and CD8+ cytotoxic T lymphocytes (CTLs) and has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. However, the medical use of IL-2 is restricted because of its narrow therapeutic window and potential side effects, including the expansion of regulatory T cells (Tregs). METHODS In this study, the authors investigated the complementary effects of transforming growth factor-β2 (TGF-β2) anti-sense oligodeoxynucleotide (TASO) on the immunotherapeutic potential of IL-2 in a melanoma-bearing humanized mouse model. RESULTS The authors observed that the combination of TASO and IL-2 facilitated infiltration of CTLs into the tumor, thereby potentiating the tumor killing function of CTLs associated with increased granzyme B expression. In addition, TASO attenuated the increase in Tregs by IL-2 in the peripheral blood and spleen and also inhibited infiltration of Tregs into the tumor, which was partly due to decreased CCL22. Alteration of T-cell constituents at the periphery by TGF-β2 inhibition combined with IL-2 might be associated with the synergistic augmentation of serum pro-inflammatory cytokines (such as interferon γ and tumor necrosis factor α) and decreased ratio of Tregs to CTLs in tumor tissues, which consequently results in significant inhibition of tumor growth CONCLUSIONS: These results indicate that the application of TASO improves IL-2-mediated anti-tumor immunity, thus implying that blockade of TGF-β2 in combination with IL-2 may be a promising immunotherapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea; Laboratory Animal Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye-Ji Shin
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea; Laboratory Animal Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihye Koo
- R&D Center, Autotelic Bio, Inc, Seongnam, Republic of Korea
| | - Tae Hun Kim
- R&D Center, Autotelic Bio, Inc, Seongnam, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Hee Seong
- Laboratory of Pharmacology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jun-Eui Park
- R&D Center, Autotelic Bio, Inc, Seongnam, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
5
|
Qaqish S, Datta N, Bunnapradist S, Lum EL. Listing Malignant Melanoma Patients for Renal Transplantation. Transplant Proc 2020; 52:3033-3037. [PMID: 32654800 DOI: 10.1016/j.transproceed.2020.04.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Melanoma is an immune responsive malignancy and the need for immunosuppression for successful transplantation may lead to recurrent disease. The recommended waiting time is unknown with various groups recommending anywhere from no wait to 5 years. METHODS In this single-center, retrospective observational study all kidney transplant recipients' charts from 1991 to 2015 were reviewed for a diagnosis of melanoma before transplantation. The charts were reviewed for the clinical characteristics of melanoma pre transplantation, induction immunosuppression, maintenance immunosuppression, graft function, death, and recurrence of melanoma. RESULTS Thirteen patients with a history of melanoma underwent kidney transplantation during this period. Recipients had been in remission for an average of 7.0 years (range, 10 months to 20 years, median 6 years). Approximately 61.5% received a living donor transplant, antithymocyte globulin was administered in 23.1% of recipients, and the remaining 76.9% received basiliximab. Melanoma recurred in 1 patient (7.7%). Maintenance immunosuppression varied, but only 2 patients remained on standard triple therapy with prednisone, calcineurin inhibitor, and antimetabolite therapy. Average follow-up time since transplant was 7.5 years, with 1 patient death 9 years post transplant from sepsis. CONCLUSION In conclusion, with our center demonstrates safety of kidney transplantation in patients with a prior history of localized melanoma and shorter waiting time. In malignant melanoma stage 0 and 1, waiting the recommended 5 years from the time of remission to kidney transplantation should be reconsidered.
Collapse
Affiliation(s)
- Shaker Qaqish
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Nakul Datta
- Department of Medicine, Division of Nephrology, Kidney and Pancreas Transplant Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Suphamai Bunnapradist
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Erik L Lum
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
6
|
Tang L, Peng C, Zhu SS, Zhou Z, Liu H, Cheng Q, Chen X, Chen XP. Tre2-Bub2-Cdc16 Family Proteins Based Nomogram Serve as a Promising Prognosis Predicting Model for Melanoma. Front Oncol 2020; 10:579625. [PMID: 33194704 PMCID: PMC7656061 DOI: 10.3389/fonc.2020.579625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Tre2-Bub2-Cdc16 (TBC) proteins are conserved in eukaryotic organisms and function as negative feedback dominating the GAPs for Rab GTPases, while the function of TBC proteins in melanoma remains unclear. In this study, we observed the differential expression of 33 TBC genes in TCGA datasets classified by clinical features. Seven prognostic-associated TBC genes were identified by LASSO Cox regression analysis. Mutation analysis revealed distinctive frequency alteration in the seven prognostic-associated TBCs between cases with high and low scores. High-risk score and cluster 1 based on LASSO Cox regression and consensus clustering analysis were relevant to clinical features and unfavorable prognosis. GSVA analysis showed that prognostic-associated TBCs were related to metabolism and protein transport signaling pathway. Correlation analysis indicated the relationship between the prognostic-associated TBCs with RAB family members, invasion-related genes and immune cells. The prognostic nomogram model was well established to predict survival in melanoma. What's more, interference of one of the seven TBC proteins TBC1D7 was confirmed to inhibit the proliferation, migration and invasion of melanoma cells in vitro. In summary, we preliminarily investigated the impact of TBCs on melanoma through multiple bioinformatics analysis and experimental validation, which is helpful for clarifying the mechanism of melanoma and the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Su-Si Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Zhou
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| | - Quan Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
| |
Collapse
|
7
|
Biomarkers, measured during therapy, for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Melanoma Res 2020; 29:453-464. [PMID: 30855527 PMCID: PMC6727956 DOI: 10.1097/cmr.0000000000000589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs), which target CTLA-4 or PD-(L)1 molecules, have shown impressive therapeutic results. Durable responses, however, are only observed in a segment of the patient population and must be offset against severe off-target immune toxicity and high costs. This calls for biomarkers that predict response during ICI treatment. Although many candidate biomarkers exist, as yet, there has been no systematic overview of biomarkers predictive during. Here, we provide a systematic review of the current literature of ICI treatment to establish an overview of candidate predictive biomarkers during ICI treatment in melanoma patients. We performed a systematic Medline search (2000-2018, 1 January) on biomarkers for survival or response to ICI treatment in melanoma patients. We retrieved 735 publications, of which 79 were finally included in this systematic review. Blood markers were largely studied for CTLA-4 ICI, whereas tumor tissue markers were analyzed for PD-(L)1 ICI. Blood cytology and soluble factors were more frequently correlated to overall survival (OS) than response, indicating their prognostic rather than predictive nature. An increase in tumor-infiltrating CD8 + T-cells and a decrease in regulatory T-cells were correlated to response, in addition to mutational load, neoantigen load, and immune-related gene expression. Immune-related adverse events were also associated frequently with a favorable response and OS. This review shows the great variety of potential biomarkers published to date, in an attempt to better understand response to ICI therapy; it also highlights the candidate markers for future research. The most promising biomarkers for response to ICI treatment are the occurrence of immune-related adverse events (especially vitiligo), lowering of lactate dehydrogenase, and increase in activated CD8 + and decrease in regulatory T-cells.
Collapse
|
8
|
Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21114071. [PMID: 32517213 PMCID: PMC7313051 DOI: 10.3390/ijms21114071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modern immunotherapy together with targeted therapy has revolutionized the treatment of advanced melanoma. Inhibition of immune checkpoints significantly improved the median overall survival and gave hope to many melanoma patients. However, this treatment has three serious drawbacks: high cost, serious side effects, and an effectiveness limited only to approximately 50% of patients. Some patients do not derive any or short-term benefit from this treatment due to primary or secondary resistance. The response to immunotherapy depends on many factors that fall into three main categories: those associated with melanoma cells, those linked to a tumor and its microenvironment, and those classified as individual ontogenic and physiological features of the patient. The first category comprises expression of PD-L1 and HLA proteins on melanoma cells as well as genetic/genomic metrics such as mutational load, (de)activation of specific signaling pathways and epigenetic factors. The second category is the inflammatory status of the tumor: “hot” versus “cold” (i.e., high versus low infiltration of immune cells). The third category comprises metabolome and single nucleotide polymorphisms of specific genes. Here we present up-to-date data on those biological factors influencing melanoma response to immunotherapy with a special focus on signaling pathways regulating the complex process of anti-tumor immune response. We also discuss their potential predictive capacity.
Collapse
|
9
|
Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol 2019; 41:359-377. [PMID: 31028434 PMCID: PMC6505509 DOI: 10.1007/s00281-019-00742-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
Forming the outer body barrier, our skin is permanently exposed to pathogens and environmental hazards. Therefore, skin diseases are among the most common disorders. In many of them, the immune system plays a crucial pathogenetic role. For didactic and therapeutic reasons, classification of such immune-mediated skin diseases according to the underlying dominant immune mechanism rather than to their clinical manifestation appears to be reasonable. Immune-mediated skin diseases may be mediated mainly by T cells, by the humoral immune system, or by uncontrolled unspecific inflammation. According to the involved T cell subpopulation, T cell-mediated diseases may be further subdivided into T1 cell-dominated (e.g., vitiligo), T2 cell-dominated (e.g., acute atopic dermatitis), T17/T22 cell-dominated (e.g., psoriasis), and Treg cell-dominated (e.g., melanoma) responses. Moreover, T cell-dependent and -independent responses may occur simultaneously in selected diseases (e.g., hidradenitis suppurativa). The effector mechanisms of the respective T cell subpopulations determine the molecular changes in the local tissue cells, leading to specific microscopic and macroscopic skin alterations. In this article, we show how the increasing knowledge of the T cell biology has been comprehensively translated into the pathogenetic understanding of respective model skin diseases and, based thereon, has revolutionized their daily clinical management.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lucie Loyal
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolf-Dietrich Döcke
- SBU Oncology, Pharmaceuticals, Bayer AG, Berlin and Wuppertal, Müllerstraße 178, 13353, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Kleef R, Moss R, Szasz AM, Bohdjalian A, Bojar H, Bakacs T. Complete Clinical Remission of Stage IV Triple-Negative Breast Cancer Lung Metastasis Administering Low-Dose Immune Checkpoint Blockade in Combination With Hyperthermia and Interleukin-2. Integr Cancer Ther 2018; 17:1297-1303. [PMID: 30193538 PMCID: PMC6247552 DOI: 10.1177/1534735418794867] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The prognosis of triple-negative breast cancer with metastases after chemotherapy
remains dismal. We report the case of a 50-year-old female with first disease
recurrence at the axillary lymph node and, later on, bilateral pulmonary
metastases with severe shortness of breath. The patient received low-dose immune
checkpoint blockade (concurrent nivolumab and ipilimumab) weekly over 3 weeks
with regional hyperthermia 3 times a week, followed by systemic fever-range
hyperthermia induced by interleukin-2 for 5 days. She went into complete
remission of her pulmonary metastases with transient WHO I-II diarrhea and skin
rash. The patient remained alive for 27 months after the start of treatment,
with recurrence of metastases as a sternal mass, and up to 3 cm pleural
metastases. This exceptional response should instigate further research efforts
with this protocol, which consists only of approved drugs and treatments.
Collapse
Affiliation(s)
- Ralf Kleef
- 1 Immunology & Integrative Oncology, Vienna, Austria
| | | | - A Marcell Szasz
- 3 Semmelweis University, Budapest, Hungary.,4 Lund University, Lund, Sweden
| | | | - Hans Bojar
- 6 NextGen Oncology Group, Dusseldorf, Germany
| | | |
Collapse
|
11
|
Kitano S, Nakayama T, Yamashita M. Biomarkers for Immune Checkpoint Inhibitors in Melanoma. Front Oncol 2018; 8:270. [PMID: 30073150 PMCID: PMC6058029 DOI: 10.3389/fonc.2018.00270] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors have now become a standard therapy for malignant melanoma. However, as immunotherapies are effective in only a limited number of patients, biomarker development remains one of the most important clinical challenges. Biomarkers predicting clinical benefit facilitate appropriate selection of individualized treatments for patients and maximize clinical benefits. Many biomarkers derived from tumors and peripheral blood components have recently been reported, mainly in retrospective settings. This review summarizes the recent findings of biomarker studies for predicting the clinical benefits of immunotherapies in melanoma patients. Taking into account the complex interactions between the immune system and various cancers, it would be difficult for only one biomarker to predict clinical benefits in all patients. Many efforts to discover candidate biomarkers are currently ongoing. In the future, verification, by means of a prospective study, may allow some of these candidates to be combined into a scoring system based on bioinformatics technology.
Collapse
Affiliation(s)
- Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Takayuki Nakayama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Makiko Yamashita
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Kupcova Skalnikova H, Cizkova J, Cervenka J, Vodicka P. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci 2017; 18:E2697. [PMID: 29236046 PMCID: PMC5751298 DOI: 10.3390/ijms18122697] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Jana Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16500 Prague, Czech Republic.
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12843 Prague 4, Czech Republic.
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
13
|
NF-κB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell 2017; 170:1096-1108.e13. [PMID: 28886380 DOI: 10.1016/j.cell.2017.08.004] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/02/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) play a pivotal role in the inhibition of anti-tumor immune responses. Understanding the mechanisms governing Treg homeostasis may therefore be important for development of effective tumor immunotherapy. We have recently demonstrated a key role for the canonical nuclear factor κB (NF-κB) subunits, p65 and c-Rel, in Treg identity and function. In this report, we show that NF-κB c-Rel ablation specifically impairs the generation and maintenance of the activated Treg (aTreg) subset, which is known to be enriched at sites of tumors. Using mouse models, we demonstrate that melanoma growth is drastically reduced in mice lacking c-Rel, but not p65, in Tregs. Moreover, chemical inhibition of c-Rel function delayed melanoma growth by impairing aTreg-mediated immunosuppression and potentiated the effects of anti-PD-1 immunotherapy. Our studies therefore establish inhibition of NF-κB c-Rel as a viable therapeutic approach for enhancing checkpoint-targeting immunotherapy protocols.
Collapse
|
14
|
Fakhar-e-Alam M, Akram MW, Iqbal S, Alimgeer KS, Atif M, Sultana K, Willander M, Wang ZM. Empirical Modeling of Physiochemical Immune Response of Multilayer Zinc Oxide Nanomaterials under UV Exposure to Melanoma and Foreskin Fibroblasts. Sci Rep 2017; 7:46603. [PMID: 28436451 PMCID: PMC5402280 DOI: 10.1038/srep46603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/21/2017] [Indexed: 01/05/2023] Open
Abstract
Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054 Chengdu, China
- Department of Science and Technology, Campus Norrköping, Linköping University, SE-601 74 Norrköping, Sweden
- Department of Physics, GC University, 38000 Faisalabad, Pakistan
| | - M. Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054 Chengdu, China
| | - Seemab Iqbal
- Department of Physics, GC University, 38000 Faisalabad, Pakistan
| | - K. S. Alimgeer
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - M. Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
- National Institute of Laser and Optronics, Nilore, Islamabad, Pakistan
| | - K. Sultana
- Department of Science and Technology, Campus Norrköping, Linköping University, SE-601 74 Norrköping, Sweden
| | - M. Willander
- Department of Science and Technology, Campus Norrköping, Linköping University, SE-601 74 Norrköping, Sweden
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054 Chengdu, China
| |
Collapse
|
15
|
Ren PT, Zhang Y. Comparative investigation of the effects of specific antigen‑sensitized DC‑CIK and DC‑CTL cells against B16 melanoma tumor cells. Mol Med Rep 2017; 15:1533-1538. [PMID: 28260039 PMCID: PMC5364993 DOI: 10.3892/mmr.2017.6175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/07/2016] [Indexed: 12/12/2022] Open
Abstract
The use of personalized adoptive immunotherapy as a potential novel approach is promising in the treatment of tumors resistant to conventional therapies. In the present study, dendritic cell (DC)-cytokine-induced killer (CIK) and DC-cytotoxic lymphocyte (CTL) cells were cultured to examine their phenotype, proliferation and cytotoxicity against B16 melanoma tumor cells. In addition, comparative investigations of the effect of specific antigen-sensitized DC-CIK and DC-CTL cells against B16 melanoma tumor cells were performed in vitro and in vivo. The results showed that the phenotypes of the co-cultured cells were altered, and DCs promoted DC-CIK cell and DC-CTL cell differentiation and maturation in vitro. Lactate dehydrogenase cytotoxic analysis indicated that the cytotoxicity increased as the effector to target ratio increased between 10:1 and 40:1, and the cytotoxic effect towards B16 melanoma cells by DC-CTL cells was significantly higher, compared with that of DC-CIK cells. To further examine the antineoplastic efficacy of DC-CIK and DC-CTL cells in vivo, the present study performed tail-intravenous injection of DC-CIK cells and DC-CTL cells, which attenuated B16 melanoma cell-engrafted tumor growth, induced G0/G1 cell cycle arrest and accelerated cell apoptosis. Taken together, these results suggested that the use of DC-CTL or DC-CIK cell therapy as a personalized adoptive immunotherapy may regulate immune status and inhibit tumor growth in vivo. In addition, the experiments indicated that DC-CTL cells offer superior antineoplastic activity, compared with DC-CIK cells against B16 melanoma tumor cells.
Collapse
Affiliation(s)
- Peng-Tao Ren
- Department of Anus and Intestine Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuan Zhang
- Electrocardiogram Room, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
16
|
Proskurina AS, Gvozdeva TS, Potter EA, Dolgova EV, Orishchenko KE, Nikolin VP, Popova NA, Sidorov SV, Chernykh ER, Ostanin AA, Leplina OY, Dvornichenko VV, Ponomarenko DM, Soldatova GS, Varaksin NA, Ryabicheva TG, Uchakin PN, Rogachev VA, Shurdov MA, Bogachev SS. Five-year disease-free survival among stage II-IV breast cancer patients receiving FAC and AC chemotherapy in phase II clinical trials of Panagen. BMC Cancer 2016; 16:651. [PMID: 27538465 PMCID: PMC4990870 DOI: 10.1186/s12885-016-2711-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report on the results of a phase II clinical trial of Panagen (tablet form of fragmented human DNA preparation) in breast cancer patients (placebo group n = 23, Panagen n = 57). Panagen was administered as an adjuvant leukoprotective agent in FAC and AC chemotherapy regimens. Pre-clinical studies clearly indicate that Panagen acts by activating dendritic cells and induces the development of adaptive anticancer immune response. METHODS We analyzed 5-year disease-free survival of patients recruited into the trial. RESULTS Five-year disease-free survival in the placebo group was 40 % (n = 15), compared with the Panagen arm - 53 % (n = 51). Among stage III patients, disease-free survival was 25 and 52 % for placebo (n = 8) and Panagen (n = 25) groups, respectively. Disease-free survival of patients with IIIB + C stage was as follows: placebo (n = 6)-17 % vs Panagen (n = 18)-50 %. CONCLUSIONS Disease-free survival rate (17 %) of patients with IIIB + C stage breast cancer receiving standard of care therapy is within the global range. Patients who additionally received Panagen demonstrate a significantly improved disease-free survival rate of 50 %. This confirms anticancer activity of Panagen. TRIAL REGISTRATION ClinicalTrials.gov NCT02115984 from 04/07/2014.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | | | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Konstantin E Orishchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Sergey V Sidorov
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Oncology Department of Municipal Hospital No 1, Novosibirsk, 630047, Russia
| | - Elena R Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Alexandr A Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Olga Y Leplina
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Victoria V Dvornichenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, 664049, Russia.,Regional Oncology Dispensary, Irkutsk, 664035, Russia
| | - Dmitriy M Ponomarenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, 664049, Russia.,Regional Oncology Dispensary, Irkutsk, 664035, Russia
| | - Galina S Soldatova
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Clinic Department of the Central Clinical Hospital, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | - Vladimir A Rogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | | | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia.
| |
Collapse
|