1
|
Minchenko OH, Sliusar MY, Khikhlo YP, Halkin OV, Viletska YM, Khita OO, Minchenko DO. Knockdown of ERN1 disturbs the expression of phosphoserine aminotransferase 1 and related genes in glioblastoma cells. Arch Biochem Biophys 2024; 759:110104. [PMID: 39059599 DOI: 10.1016/j.abb.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleh V Halkin
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
4
|
Chen Z, Zhou H, Hu H, Chen L. Blocking the Metabolic Switch Toward Cytosolic 1C Flux: A Novel Therapeutic Approach for Tumors With Low SLC19A1 Expression. Pathol Oncol Res 2022; 28:1610337. [PMID: 35531073 PMCID: PMC9072622 DOI: 10.3389/pore.2022.1610337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Zhou
- Radiology Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Li Y, Yang X, Xiong X. Circ_0004015 silencing represses cisplatin chemoresistance and tumor progression by reducing KLF8 in a miR-198-dependent manner in non-small cell lung cancer. Genomics 2022; 114:110294. [DOI: 10.1016/j.ygeno.2022.110294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
|
6
|
Kaushik P, Kumar A. Emerging role and function of miR-198 in human health and diseases. Pathol Res Pract 2021; 229:153741. [PMID: 34952425 DOI: 10.1016/j.prp.2021.153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Ever since their discovery, microRNAs (miRNAs/miRs) have astonished us by the plethora of processes they regulate, and thus adding another dimension to the gene regulation. They have been implicated in several diseases affecting cardiovascular, neurodegenerative, hepatic, autoimmune and inflammatory functions. A primate specific exonic miRNA, miR-198 has been vastly studied during the past decade, and shown to have a critical role in wound healing. The aberrant expression of miR-198 was first reported in schizophrenia, linking it to neural development. Later, its dysregulation and tumor suppressive role was reported in hepatocellular carcinoma. However, this was just a beginning, and after which there was an explosion of reports linking miR-198 deregulation to cancers and other ailments. The first target to be identified for miR-198 was Cyclin T1 in monocytes affecting HIV1 replication. Depending on the type of cancer, miR-198 has been shown to function either as a tumor suppressor or an oncomir. Interestingly, miR-198 is not only known to regulate multiple targets and pathways, but also is itself regulated by several circular RNAs and long-non-coding RNAs, highlighting a complex regulatory network. This review highlights the currently understood mechanism and regulation of miR-198 in different diseases, and its possible diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Li M, Liao H, Wu J, Chen B, Pang R, Huang J, Zhu Y. Long noncoding RNA matrilineal expression gene 3 inhibits hepatocellular carcinoma progression by targeting microRNA-5195-3p and regulating the expression of forkhead box O1. Bioengineered 2021; 12:12880-12890. [PMID: 34895065 PMCID: PMC8810169 DOI: 10.1080/21655979.2021.2005986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022] Open
Abstract
We investigated the effect of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) on hepatocellular carcinoma (HCC) tumorigenesis and progression by targeting miR-5195-3p and transcription factor forkhead box O1 (FOXO1) to identify a novel target for HCC treatment. HCC clinical samples were collected, and cell counting kit-8 (CCK-8), and transwell migration and invasion assays were performed. Furthermore, interaction was detected via double luciferase reporter and RNA pull-down assays. MEG3, miR-5195-3p, and FOXO1 expression was determined by quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting. Xenograft tumor models were established to investigate the effect of MEG3 in vivo. Compared with normal tissues, MEG3 expression was significantly downregulated in HCC tissues. MEG3 overexpression inhibited the viability and migration of HCC cells. Double luciferase reporter and RNA pull-down assays confirmed the binding between MEG3 and miR-5195-3p as well as between miR-5195-3p and FOXO1. RT-qPCR and Western blotting results showed that MEG3 inhibited the expression of miR-5195-3p and promoted that of FOXO1. Additionally, MEG3 overexpression inhibited HCC tumorigenesis and progression in xenograft tumor models while depletion of MEG3 exerted the opposite way. Therefore, the lncRNA MEG3 inhibits HCC tumorigenesis and progression through the miR-5195-3p/FOXO1 signaling axis.
Collapse
Affiliation(s)
- Minan Li
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hong Liao
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Wu
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Chen
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Runhua Pang
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junhai Huang
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaqing Zhu
- The Third Department of Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Fang G, Chen T, Mao R, Huang X, Ji L. Circular RNA circ_0089153 acts as a competing endogenous RNA to regulate colorectal cancer development by the miR-198/SUMO-specific peptidase 1 (SENP1) axis. Bioengineered 2021; 12:5664-5678. [PMID: 34516314 PMCID: PMC8806507 DOI: 10.1080/21655979.2021.1967076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has indicated the implications of circular RNAs (circRNAs) in the development of colorectal cancer (CRC). In this study, we investigated the functional role and mechanism of circ_0089153 in CRC pathogenesis. The expression levels of circ_0089153, microRNA (miR)-198, and SUMO-specific peptidase 1 (SENP1) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Cell proliferation, sphere formation, tube formation, and apoptosis abilities were detected by 5-Ethynyl-2ʹ-Deoxyuridine (EdU), sphere formation, tube formation, and flow cytometry assays, respectively. The direct relationship between miR-198 and circ_0089153 or SENP1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The mouse xenograft assays were performed to evaluate the role of circ_0089153 in vivo. Our data showed that circ_0089153 was overexpressed in CRC tissues and cells. Depletion of circ_0089153 repressed cell proliferation, sphere formation ability, and enhanced cell apoptosis, as well as inhibited tube formation in vitro. Moreover, circ_0089153 depletion diminished tumor growth in vivo. Mechanistically, circ_0089153 targeted miR-198, and the effects of circ_0089153 were mediated by miR-198. SENP1 was identified as a direct and functional target of miR-198. Circ_0089153 worked as a competing endogenous RNA (ceRNA) to post-transcriptionally regulate SENP1 expression by miR-198. Our findings identify circ_0089153 as a novel regulator of CRC development through the regulation of the miR-198/SENP1 axis and establish a strong rationale for developing circ_0089153 as a promising therapeutic against CRC.
Collapse
Affiliation(s)
- Guan Fang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruibo Mao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Ji
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Yuan C, Su Z, Liao S, Li D, Zhou Z, Wang Y, Quan M, Zeng L, Lv C, Shen C, Gong W, Wu J, Chen X, Hu W, Lv X, Si W, Yu X. miR-198 inhibits the progression of renal cell carcinoma by targeting BIRC5. Cancer Cell Int 2021; 21:390. [PMID: 34289837 PMCID: PMC8296723 DOI: 10.1186/s12935-021-02092-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND miR-198 is involved in the formation, migration, invasion, and metastasis of various malignant cancers. However, the function and mechanism of action of miR-198 in the tumorigenesis of renal cell carcinoma (RCC) remain elusive. Here, we aimed to explore the role of miR198 in RCC. METHODS Immunohistochemistry was performed to estimate the level of survivin in RCC sections. Quantitative real-time polymerase chain reaction was performed to determine the expression level of miR-198 in fresh RCC tissues. Furthermore, the target relationship between miR-198 and BIRC5 was predicted using the TargetScanHuman 7.2 database and verified via dual-luciferase reporter assay and western blotting. The effects of miR-198 on the viability, apoptosis, invasion, and migration of A498 and ACHN cells were studied using Cell Counting Kit-8, flow cytometry, transwell migration assay, and wound healing assay, respectively. Additionally, a xenograft nude mouse model was established to evaluate the effect of miR-198 on RCC tumorigenesis. RESULTS The expression levels of BIRC5 and miR-198 were respectively higher and lower in RCC tissues than those in normal adjacent tissues. Furthermore, miR-198 could inhibit luciferase activity and reduce the protein level of survivin without affecting the BIRC5 mRNA levels. miR-198 inhibited cell viability, migration, and invasion and promoted cell apoptosis; co-transfection with BIRC5 could rescue these effects. Moreover, miR-198 could repress tumor growth in the xenograft nude mouse model of RCC. CONCLUSIONS Our study demonstrates that miR-198 suppresses RCC progression by targeting BIRC5.
Collapse
Affiliation(s)
- Chao Yuan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Shengjie Liao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Duanzhuo Li
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Zhiwen Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Yawen Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Mingchun Quan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Lingling Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Cai Lv
- Department of Urology, Haikou Municipal Hospital, Haikou, 570208, Hainan, China
| | - Chenyi Shen
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Weida Gong
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Jianfeng Wu
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Xiaogang Chen
- Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Wenbing Hu
- Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Xu Lv
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China.
| | - Wenxia Si
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China.
| | - Xin Yu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China.
- Zhaoqing Medical College, Zhaoqing, 526020, Guangdong, China.
| |
Collapse
|
10
|
Ghafouri-Fard S, Aghabalazade A, Shoorei H, Majidpoor J, Taheri M, Mokhtari M. The Impact of lncRNAs and miRNAs on Apoptosis in Lung Cancer. Front Oncol 2021; 11:714795. [PMID: 34367998 PMCID: PMC8335161 DOI: 10.3389/fonc.2021.714795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aghabalazade
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Critical Care Quality improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang YH, Zhu ZR, Tong D, Zhou R, Xiao K, Peng L. MicroRNAs and Lung Cancer: A Review Focused on Targeted Genes. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:1-10. [DOI: 10.14218/erhm.2020.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Lin X, Wu Z, Hu H, Luo ML, Song E. Non-coding RNAs rewire cancer metabolism networks. Semin Cancer Biol 2021; 75:116-126. [PMID: 33421618 DOI: 10.1016/j.semcancer.2020.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNAs with limited or no protein-coding ability. These interact with their target molecules and participate in the precise regulation of disease development. Metabolic reprogramming is a hallmark in cancer, and is considered essential in meeting increased macromolecular biosynthesis and energy generation of tumors. Recent studies have revealed the involvement of ncRNAs in several metabolic regulations of cancer through direct modulation of metabolic enzyme activities or participation of metabolism-related signaling pathways. Elucidation of how ncRNAs regulate metabolic reprogramming of cancers has opened up a novel intention to understand the mechanism of metabolic rewiring and also the opportunities of utilizing ncRNA-based therapeutics for targeting the metabolism in cancer treatment.
Collapse
Affiliation(s)
- Xiaorong Lin
- Diagnosis and Treatment Center of Breast Diseases, Shantou Affiliated Hospital, Sun Yat-sen University, Shantou 515031, People's Republic of China; Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Zhiyong Wu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Affiliated Hospital, Sun Yat-sen University, Shantou 515031, People's Republic of China
| | - Hai Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China.
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China; Fountain-Valley Institute for Life Sciences, 4th Floor, Building D, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Huangpu District, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Luo X, He X, Liu X, Zhong L, Hu W. miR-96-5p Suppresses the Progression of Nasopharyngeal Carcinoma by Targeting CDK1. Onco Targets Ther 2020; 13:7467-7477. [PMID: 32801769 PMCID: PMC7406360 DOI: 10.2147/ott.s248338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharyngeal mucosa. Clinically, radiotherapy is the preferred treatment for NPC, and cervical lymph node metastasis is easy to emerge in the early stage. Therefore, this study aimed to investigate the role and potential molecular mechanisms of miR-96-5p in NPC cells to develop new therapeutic horizons. Methods The expression of miR-96-5p and CDK1 was measured by RT-qPCR or Western blot. The target relationship between miR-96-5p and CDK1 was confirmed by luciferase reporter assay. CCK-8, sphere formation, flow cytometry and colony formation assay were employed to examine cell viability, stem-like property, apoptosis and cycle, respectively. Male BALB/c nude mice model (6-8 weeks, weigh 18-20 g) was used to evaluate the effect of miR-96-5p on tumor growth in vivo. Results miR-96-5p was lowly expressed and CDK1 was highly expressed in NPC tissues and cell lines. CDK1 was identified as a direct target of miR-96-5p, and its expression was negatively regulated by miR-96-5p. By targeting CDK1, miR-96-5p overexpression significantly inhibited tumor sphere formation, promoted apoptosis and cell cycle arrest in CNE-2Z cells. Importantly, CCK-8 and colony formation assay demonstrated that elevated miR-96-5p enhanced the radiotherapy and chemotherapy sensitivity of CNE-2Z cells. Animal experiments showed that the overexpression of miR-96-5p reduced tumor weight and size in tumor-bearing mice and inhibited the expression of stem-like marker proteins and apoptosis-related proteins. Conclusion These results, together, suggested that miR-96-5p induced cell cycle arrest and apoptosis, inhibited stem-like property, and enhanced the radiochemical sensitivity of NPC by targeting CDK1. In short, miR-96-5p may be a diagnostic and therapeutic target for NPC.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Xian He
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Xing Liu
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Lunkun Zhong
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| | - Wenjian Hu
- Department of Otolaryngology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646699, People's Republic of China
| |
Collapse
|
14
|
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Metabolic pathways leading to the synthesis, uptake, and usage of the nonessential amino acid serine are frequently amplified in cancer. Serine encounters diverse fates in cancer cells, including being charged onto tRNAs for protein synthesis, providing head groups for sphingolipid and phospholipid synthesis, and serving as a precursor for cellular glycine and one-carbon units, which are necessary for nucleotide synthesis and methionine cycle reloading. This review will focus on the participation of serine and glycine in the mitochondrial one-carbon (SGOC) pathway during cancer progression, with an emphasis on the genetic and epigenetic determinants that drive SGOC gene expression. We will discuss recently elucidated roles for SGOC metabolism in nucleotide synthesis, redox balance, mitochondrial function, and epigenetic modifications. Finally, therapeutic considerations for targeting SGOC metabolism in the clinic will be discussed.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Dou C, Xu Q, Liu J, Wang Y, Zhou Z, Yao W, Jiang K, Cheng J, Zhang C, Tu K. SHMT1 inhibits the metastasis of HCC by repressing NOX1-mediated ROS production. J Exp Clin Cancer Res 2019. [DOI: 10.1186/s13046-019-1067-5 pmid:307552432019-02-12]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
16
|
Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, Bouzidi A, Magnifico MC, Marani M, Menendez JA, Fatica A, Macone A, Armaos A, Tartaglia GG, Contestabile R, Paiardini A, Cutruzzolà F. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res 2019; 47:4240-4254. [PMID: 30809670 PMCID: PMC6486632 DOI: 10.1093/nar/gkz129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.
Collapse
Affiliation(s)
- Giulia Guiducci
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Amani Bouzidi
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Maria C Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gian G Tartaglia
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Department of Life and Medical Sciences, 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Wang S, Zhang X, Yang C, Xu S. Micro
RNA
‐198‐5p inhibits the migration and invasion of non‐small lung cancer cells by targeting fucosyltransferase 8. Clin Exp Pharmacol Physiol 2019; 46:955-967. [PMID: 31381176 DOI: 10.1111/1440-1681.13154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Siyao Wang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Xin Zhang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Chunlu Yang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Shun Xu
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| |
Collapse
|
18
|
Niu L, Zhou Y, Zhang W, Ren Y. Long noncoding RNA LINC00473 functions as a competing endogenous RNA to regulate MAPK1 expression by sponging miR-198 in breast cancer. Pathol Res Pract 2019; 215:152470. [DOI: 10.1016/j.prp.2019.152470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
|
19
|
Ray J, Hoey C, Huang X, Jeon J, Taeb S, Downes MR, Boutros PC, Liu SK. MicroRNA‑198 suppresses prostate tumorigenesis by targeting MIB1. Oncol Rep 2019; 42:1047-1056. [PMID: 31322262 PMCID: PMC6667842 DOI: 10.3892/or.2019.7234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/12/2019] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs are small non-coding RNA molecules which act as modulators of gene function, and have been identified as playing important roles in cancer as both tumor suppressors and oncogenes. The present study aimed to examine the role of miR-198 in prostate cancer aggression by analyzing how it influences several hallmarks of cancer. Abundance of miR-198 in prostate cancer and association with clinical characteristics was analyzed using a CPC-Gene prostate cancer dataset. Overexpression of miR-198 was performed using transient transfection of miR-198 mimic prior to assaying proliferation, cell cycle, and colony formation in LNCaP and DU145 cell lines using standard protocols. In vivo tumor formation in athymic nude mice was examined using LNCaP xenografts with stable overexpression conferred using lentiviral miR-198 transduction. Protein and mRNA abundance of MIB1 was determined using western blotting and RT-qPCR respectively, while miR-198 binding to MIB1 was validated using a luciferase reporter assay. miR-198 abundance was lower in high Gleason grade prostate cancer relative to intermediate and low-grade cancer. Overexpression of miR-198 diminished proliferation of prostate cancer cell lines, increased G0/G1 cell cycle arrest, and significantly impaired colony formation. Elevated miR-198 abundance was also demonstrated to impair tumor formation in vivo using LNCaP xenografts. Mindbomb E3 ubiquitin protein ligase 1 (MIB1) was demonstrated to be directly targeted by miR-198, and knockdown of MIB1 recapitulated the effects of miR-198 on proliferation and colony formation. The present evidence supports miR-198 as an important tumor suppressor in prostate cancer, and demonstrates for the first time that it acts by targeting MIB1. The present study reinforces the importance and complexity of miRNA in regulating prostate cancer aggression.
Collapse
Affiliation(s)
- Jessica Ray
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Christianne Hoey
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Jouhyun Jeon
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Samira Taeb
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Michelle R Downes
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
20
|
Wang SS, Fang YY, Huang JC, Liang YY, Guo YN, Pan LJ, Chen G. Clinical value of microRNA-198-5p downregulation in lung adenocarcinoma and its potential pathways. Oncol Lett 2019; 18:2939-2954. [PMID: 31402959 PMCID: PMC6676716 DOI: 10.3892/ol.2019.10610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD), the main subtype of non-small cell lung cancer, is known to be regulated by various microRNAs (miRs/miRNAs); however, the role of miR-198-5p in LUAD has not been clarified. In the present study, the clinical value of miR-198-5p in LUAD and its potential molecular mechanism was evaluated. miR-198-5p expression was examined by reverse transcription-quantitative PCR (RT-qPCR) in 101 paired LUAD and adjacent normal lung tissues. Subsequently, the miR-198-5p expression level was determined from microarray data from the Gene Expression Omnibus, ArrayExpress and by meta-analyses. Furthermore, the target mRNAs of miR-198-5p from 12 miRNA-mRNA predictive tools were intersected with The Cancer Genome Atlas (TCGA)-based differentially expressed genes. In addition, Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to determine the possible mechanism of miR-198-5p in LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins database was employed to construct a protein-protein interaction network among the potential target genes of miR-198-5p. The results showed that miR-198-5p expression was lower in LUAD tissues than in adjacent non-cancerous lung tissues (4.469±2.495 vs. 5.301±2.502; P=0.015). Meta-analyses, including the data from the present study and online microarray data, also verified the downregulation of miR-198-5p in 584 cases of LUAD. The expression of miR-198-5p was associated with the age, blood vessel invasion, Tumor-Node-Metastasis stage, and lymph node metastasis of patients with LUAD and served as an independent prognostic factor for survival. The hub genes of miR-198-5p were upregulated in LUAD, according to TCGA and The Human Protein Atlas. For the KEGG pathway analysis, the most enriched KEGG pathway was the p53 signaling pathway (P=1.42×10−6). These findings indicated that the downregulation of miR-198-5p may play a pivotal role in the development of LUAD by targeting various signaling pathways.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ye-Ying Fang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Radiation Oncology Clinical Medical Research Center of Guangxi, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yue-Ya Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Nan Guo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Jiang Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Radiation Oncology Clinical Medical Research Center of Guangxi, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
Wu S, Li H, Lu C, Zhang F, Wang H, Lu X, Zhang G. Aberrant expression of hsa_circ_0025036 in lung adenocarcinoma and its potential roles in regulating cell proliferation and apoptosis. Biol Chem 2019; 399:1457-1467. [PMID: 30138108 DOI: 10.1515/hsz-2018-0303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
As the most common histological subtype of lung cancer, lung adenocarcinoma remains a tremendous risk to public health, which requires ceaseless efforts to elucidate the potential diagnostic and therapeutic strategies. Circular RNAs (circRNAs) have been identified with emerging roles in tumorigenesis and development. Our preliminary work noticed that hsa_circ_0025036 was significantly upregulated in lung adenocarcinoma tissues. However, its specific roles in lung adenocarcinoma remain unclear. The results in this study revealed that hsa_circ_0025036 existed as a circular form and was aberrantly upregulated in lung adenocarcinoma tissues via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Its expression level exhibited a close link with aggressive clinicopathological parameters including cancer differentiation, TNM stage and lymph node metastasis. hsa_circ_0025036 knockdown significantly suppressed cell proliferation and promoted cell apoptosis in A549 and Calu-3 cells. Moreover, hsa_circ_0025036/miR-198/SHMT1&TGF-α axis was identified via bioinformatics analysis and Dual-Luciferase Reporter assays. miR-198 inhibitors reversed the function of hsa_circ_0025036 knockdown. hsa_circ_0025036 knockdown exerted similar effects with miR-198 upregulation on cell proliferation and apoptosis. In conclusion, we demonstrate that hsa_circ_0025036 regulates cell proliferation and apoptosis in lung adenocarcinoma cells probably via hsa_circ_0025036/miR-198/SHMT1&TGF-α axis. hsa_circ_0025036 may serve as a potential prognostic biomarker and a therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shujun Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Furui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Xinhua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
22
|
MicroRNA-198 inhibits proliferation and induces apoptosis by directly suppressing FGFR1 in gastric cancer. Biosci Rep 2019; 39:BSR20181258. [PMID: 31138759 PMCID: PMC6558723 DOI: 10.1042/bsr20181258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are increasingly recognized as important therapeutic targets in cancer. Here we aim to investigate the role of miR-198, a broad-spectrum tumor suppressor, in gastric cancer (GC). MiR-198 overexpression was achieved by transfection of miR-198 mimics, followed by evaluation of cell viability using cell-counting kit 8. Cell cycle arrest and apoptosis were assessed by Annexin-V-FITC/Propidium Iodide (PI) staining flow cytometry respectively. The target of miR-198 was identified by bioinformatical analysis and confirmed by dual-luciferase assay, along with real-time PCR and Western blot analyses of target gene expression after transfection of miR-198 mimics. GC tissues were characterized by miR-198 down-regulation. Restoration of miR-198 expression attenuated GC cell proliferation and colony formation, meanwhile inducing significant G0/G1 arrest. Furthermore, combinatory therapy of cisplatin and miR-198 induced greater anti-tumor effects than treatment with cisplatin single therapy. We also identified fibroblast growth factor receptor 1 (FGFR1) as a direct target gene of miR-198. Furthermore, FGFR1 silencing elicited a similar tumor-suppressive effect as miR-198 overexpression. FGFR1 overexpression antagonized the anti-tumor effects of miR-198 overexpression. MiR-198/FGFR1 axis plays an important role in proliferation and apoptosis of GC. Therapies targeted to miR-198 can potentially improve GC treatment.
Collapse
|
23
|
Yang Q, Li J, Hu Y, Tang X, Yu L, Dong L, Chen D. MiR-218-5p Suppresses the Killing Effect of Natural Killer Cell to Lung Adenocarcinoma by Targeting SHMT1. Yonsei Med J 2019; 60:500-508. [PMID: 31124332 PMCID: PMC6536398 DOI: 10.3349/ymj.2019.60.6.500] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Lung adenocarcinoma (LA) is one of the major types of lung cancer. MicroRNAs (miRNAs) play an essential role in regulating responses of natural killer (NK) cells to cancer malignancy. However, the mechanism of miR-218-5p involved in the killing effect of NK cells to LA cells remains poorly understood. MATERIALS AND METHODS The expression of miR-218-5p was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Serine hydroxymethyl transferase 1 (SHMT1) level was detected by qRT-PCR or western blots. Cytokines production of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were detected by ELISA. The killing effect of NK cells to LA cells was investigated using lactate dehydrogenase cytotoxicity assay kit. The interaction of miR-218-5p and SHMT1 was probed by luciferase activity assay. Xenograft model was established to investigate the killing effect of NK cells in vivo. RESULTS miR-218-5p was enhanced and SHMT1 was inhibited in NK cells of LA patients, whereas stimulation of interleukin-2 (IL-2) reversed their abundances. Addition of miR-218-5p reduced IL-2-induced cytokines expression and cytotoxicity in NK-92 against LA cells. Moreover, SHMT1 was negatively regulated by miR-218-5p and attenuated miR-218-5p-mediated effect on cytotoxicity, IFN-γ and TNF-α secretion in IL-2-activated NK cells. In addition, miR-218-5p exhaustion inhibited tumor growth by promoting killing effect of NK cells. CONCLUSION miR-218-5p suppresses the killing effect of NK cells to LA cells by targeting SHMT1, providing a potential target for LA treatment by ameliorating NK cells function.
Collapse
Affiliation(s)
- Quanjun Yang
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jingjing Li
- Department One of Medical Oncology, Jing Men No.2 People's Hospital, Jing Men, China.
| | - Yili Hu
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Xiaofei Tang
- Internal Medicine, Changyang Tujia Autonomous District People's Hospital, Yichang, China
| | - Lili Yu
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Lihua Dong
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Diandian Chen
- Department of Oncology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
24
|
Subramaniam S, Jeet V, Clements JA, Gunter JH, Batra J. Emergence of MicroRNAs as Key Players in Cancer Cell Metabolism. Clin Chem 2019; 65:1090-1101. [PMID: 31101638 DOI: 10.1373/clinchem.2018.299651] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer. MicroRNAs (miRNAs) have been found to regulate cancer metabolism by regulating genes involved in metabolic pathways. Understanding this layer of complexity could lead to the development of novel therapeutic approaches. CONTENT miRNAs are noncoding RNAs that have been implicated as master regulators of gene expression. Studies have revealed the role of miRNAs in the metabolic reprogramming of tumor cells, with several miRNAs both positively and negatively regulating multiple metabolic genes. The tricarboxylic acid (TCA) cycle, aerobic glycolysis, de novo fatty acid synthesis, and altered autophagy allow tumor cells to survive under adverse conditions. In addition, major signaling molecules, hypoxia-inducible factor, phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin/phosphatase and tensin homolog, and insulin signaling pathways facilitate metabolic adaptation in tumor cells and are all regulated by miRNAs. Accumulating evidence suggests that miRNA mimics or inhibitors could be used to modulate the activity of miRNAs that drive tumor progression via altering their metabolism. Currently, several clinical trials investigating the role of miRNA-based therapy for cancer have been launched that may lead to novel therapeutic interventions in the future. SUMMARY In this review, we summarize cancer-related metabolic pathways, including glycolysis, TCA cycle, pentose phosphate pathway, fatty acid metabolism, amino acid metabolism, and other metabolism-related oncogenic signaling pathways, and their regulation by miRNAs that are known to lead to tumorigenesis. Further, we discuss the current state of miRNA therapeutics in the clinic and their future potential.
Collapse
Affiliation(s)
- Sugarniya Subramaniam
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Varinder Jeet
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jennifer H Gunter
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; .,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
25
|
He Y, Gao M, Tang H, Cao Y, Liu S, Tao Y. Metabolic Intermediates in Tumorigenesis and Progression. Int J Biol Sci 2019; 15:1187-1199. [PMID: 31223279 PMCID: PMC6567815 DOI: 10.7150/ijbs.33496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional antitumor drugs inhibit the proliferation and metastasis of tumour cells by restraining the replication and expression of DNA. These drugs are usually highly cytotoxic. They kill tumour cells while also cause damage to normal cells at the same time, especially the hematopoietic cells that divide vigorously. Patients are exposed to other serious situations such as a severe infection caused by a decrease in the number of white blood cells. Energy metabolism is an essential process for the survival of all cells, but differs greatly between normal cells and tumour cells in metabolic pathways and metabolic intermediates. Whether this difference could be used as new therapeutic target while reducing damage to normal tissues is the topic of this paper. In this paper, we introduce five major metabolic intermediates in detail, including acetyl-CoA, SAM, FAD, NAD+ and THF. Their contents and functions in tumour cells and normal cells are significantly different. And the possible regulatory mechanisms that lead to these differences are proposed carefully. It is hoped that the key enzymes in these regulatory pathways could be used as new targets for tumour therapy.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
27
|
Dou C, Xu Q, Liu J, Wang Y, Zhou Z, Yao W, Jiang K, Cheng J, Zhang C, Tu K. SHMT1 inhibits the metastasis of HCC by repressing NOX1-mediated ROS production. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:70. [PMID: 30755243 PMCID: PMC6373090 DOI: 10.1186/s13046-019-1067-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the most major type of primary hepatic cancer. Serine hydroxymethyltransferase 1 (SHMT1) is recently found to play critical roles in human cancers including lung cancer, ovarian cancer and intestinal cancer. However, the expression, function and the underlying mechanisms of SHMT1 in HCC remain uncovered. Methods qRT-PCR, immunohistochemistry and immunoblotting were performed to detect the expression of SHMT1 in HCC tissues and cell lines. HCC cell migration and invasion were determined by Boyden chamber and Transwell assay in vitro, and tumor metastasis was assessed via lung metastasis model in mice. The expression of key factors involved in epithelial-to-mesenchymal transition (EMT) process was evaluated by western blotting. Results In this study, data mining of public databases and analysis of clinical specimens demonstrated that SHMT1 expression was decreased in HCC. Reduced SHMT1 level was correlated with unfavorable clinicopathological features and poor prognosis of HCC patients. Gain- and loss-of-function experiments showed that SHMT1 overexpression inhibited the migration and invasion of HCCLM3 cells while SHMT1 knockdown enhanced the metastatic ability of Hep3B cells. Furthermore, qRT-PCR and western blotting showed that SHMT1 inhibited EMT and matrix metallopeptidase 2 (MMP2) expression. In vivo experiments showed that SHMT1 suppressed the lung metastasis of HCC cells in mice. Mechanistically, SHMT1 knockdown enhanced reactive oxygen species (ROS) production, and thus promoted the motility, EMT and MMP2 expression in Hep3B cells. Furthermore, NADPH oxidase 1 (NOX1) was identified to be the downstream target of SHMT1 in HCC. NOX1 expression was negatively correlated with SHMT1 expression in HCC. Rescue experiments revealed that NOX1 mediated the functional influence of SHMT1 on HCC cells. Conclusions These data indicate that SHMT1 inhibits the metastasis of HCC by repressing NOX1 mediated ROS production. Electronic supplementary material The online version of this article (10.1186/s13046-019-1067-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changwei Dou
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Jie Liu
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong Province, China
| | - Weifeng Yao
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Kai Jiang
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Jian Cheng
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China
| | - Chengwu Zhang
- Department of Hepatopancreatobiliary Surgery & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, Zhejiang Province, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
28
|
Georges S, Calleja LR, Jacques C, Lavaud M, Moukengue B, Lecanda F, Quillard T, Gabriel MT, Cartron PF, Baud'huin M, Lamoureux F, Heymann D, Ory B. Loss of miR-198 and -206 during primary tumor progression enables metastatic dissemination in human osteosarcoma. Oncotarget 2018; 9:35726-35741. [PMID: 30515265 PMCID: PMC6254661 DOI: 10.18632/oncotarget.26284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The metastatic dissemination is a complex multistep process by which tumor cells from a primary site enter into the systemic circulation to finally spread at distant sites. Even if this mechanism is rare at the tumor level, it remains the major cause of Osteosarcoma-patients’ relapse and mortality. MicroRNAs (miRNAs) have recently been described as novel epigenetics’ genes’ expression regulators actively implicated in cancer progression and dissemination. The understanding of their implication in the metastatic spreading could help clinicians to improve the outcome of osteosarcoma. We established the miRNA’s expression-profile between primary bone-tumors (PTs), circulating tumor cells (CTCs) and lung metastatic (META) samples from in vivo mice xenograft models. Our results show that the expression level of the miR-198 and -206 was decreased in META samples, in which the expression of the metastasis-related receptor C-Met was up-regulated. Those expression variations were validated in osteosarcoma patient biopsies from matching primary tumors and lung metastasis. We validated in vitro the endogenous miRNAs inhibitory effects on both migration and invasion, as well as we confirmed by luciferase assays that the C-Met receptor is one of their bona-fide targets. The anti-metastatic effect of these miRNAs was also validated in vivo, as their direct injections into the tumors reduce the number of lung-metastases and prolongs the overall survival of the treated animals. All together, our results suggest the absence of the miR-198 and -206 as powerful predictive biomarkers of the tumor cell dissemination and the rationale of their potential therapeutic use in the treatment of Osteosarcoma.
Collapse
Affiliation(s)
- Steven Georges
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Lidia Rodriguez Calleja
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Camille Jacques
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Melanie Lavaud
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Brice Moukengue
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Fernando Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medic al Research, University of Navarra, Pamplona, Navarra 31008, Spain
| | - Thibaut Quillard
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Marta Tellez Gabriel
- INSERM, UMR-S 1238, Nantes 44035, France.,European Associated Laboratory Sarcoma Research Unit, INSERM, University of Sheffield, Sheffield S10 2TN, UK
| | - Pierre-François Cartron
- Equipe Apoptose et Progression Tumorale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, CRCINA, INSERM, U1232, Université de Nantes, Université d'Angers, Nantes 44035, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain 44800, France.,European Associated Laboratory Sarcoma Research Unit, INSERM, University of Sheffield, Sheffield S10 2TN, UK.,Cancéropole Grand-Ouest, Réseau Epigénétique (RepiCGO), France
| | - Marc Baud'huin
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - François Lamoureux
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France
| | - Dominique Heymann
- Equipe Apoptose et Progression Tumorale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, CRCINA, INSERM, U1232, Université de Nantes, Université d'Angers, Nantes 44035, France.,European Associated Laboratory Sarcoma Research Unit, INSERM, University of Sheffield, Sheffield S10 2TN, UK
| | - Benjamin Ory
- INSERM, UMR-S 1238, Nantes 44035, France.,PhyOs, Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, Nantes 44035, France.,Cancéropole Grand-Ouest, Réseau Epigénétique (RepiCGO), France
| |
Collapse
|
29
|
Duan X, Jiang B, Yang J, Zhou L, Tian B, Mao X. FOXP3 inhibits MYC expression via regulating miR-198 and influences cell viability, proliferation and cell apoptosis in HepG2. Cancer Med 2018; 7:6182-6192. [PMID: 30378283 PMCID: PMC6308052 DOI: 10.1002/cam4.1780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Our study aimed to explore the effects of FOXP3 expression on liver neoplasms cells and to further investigate the relationship between FOXP3 and proto‐oncogene MYC. Methods QRT‐PCR was used for assessment of FOXP3 expression in liver neoplasms tissues and para‐carcinoma tissues. The effects of FOXP3 on cell viability were determined by CCK8 assay, clone formation experiment, and flow cytometry. For miRNA selection, chips were used to figure out the differentially expressed miRNAs in FOXP3‐overexpressing HepG2 cells. The result was followed by bioinformatics prediction to screen the possible MYC‐targeted miRNAs, and it was examined by dual luciferase assay and ChIP assay. The expression levels of MYC protein and apoptosis‐associated proteins (bcl2 and bax) were measured by Western blot assay. Results It showed an under‐regulated expression of FOXP3 in liver neoplasm tissues from qRT‐PCR results. Overexpression of FOXP3 contributed to cell apoptosis as well as suppressed tumor cells’ proliferation. MiR‐198 was detected to be highly expressed in FOXP3‐overexpressing HepG2 cells. FOXP3 regulated the transcription level of miR‐198 by binding to its promoter sequence and overexpressed miR‐198 could suppress tumor cells’ proliferation and promote cell apoptosis. There existed targeted relationship between miR‐198 and MYC gene. MiR‐198 inhibited cancer by suppressing the expression of MYC in liver neoplasm. Conclusion FOXP3 up‐regulated miR‐198 expression by binding to its promoter sequence specifically, while miR‐198 inhibited proto‐oncogene MYC via targeted relationship. High level of miR‐198 contributed to the apoptosis of tumor cells and suppressed cell viability meanwhile.
Collapse
Affiliation(s)
- Xiaohui Duan
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Jianhui Yang
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Lixue Zhou
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Bingzhang Tian
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery/Research Laboratory of Hepatobiliary Tumor, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
30
|
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75:2339-2354. [PMID: 29594389 PMCID: PMC5986856 DOI: 10.1007/s00018-018-2805-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Collapse
Affiliation(s)
- Andrea Mattiotti
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Stuti Prakash
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018; 285:4516-4534. [PMID: 29905002 DOI: 10.1111/febs.14586] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
32
|
Wei D, Miao Y, Yu L, Wang D, Wang Y. Downregulation of microRNA‑198 suppresses cell proliferation and invasion in retinoblastoma by directly targeting PTEN. Mol Med Rep 2018; 18:595-602. [PMID: 29749457 DOI: 10.3892/mmr.2018.8979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 11/05/2022] Open
Abstract
A number of studies have highlighted that aberrantly expressed microRNAs (miRNAs/miRs) serve crucial roles in the tumorigenesis and tumor development of retinoblastoma (RB). Hence, a full investigation of the biological roles and regulatory mechanisms of miRNAs in RB may provide novel therapeutic targets for patients with this malignancy. miR‑198 is frequently abnormally expressed in various types of human cancers. However, the expression level, biological roles and underlying mechanisms of miR‑198 in RB remain to be elucidated. In the present study, miR‑198 expression was upregulated in RB tissues and cell lines. Silencing of miR‑198 attenuated cell proliferation and invasion in RB. In addition, phosphatase and tensin homolog deleted on chromosome ten (PTEN) was predicted as a potential target of miR‑198 using bioinformatics analysis. Subsequent luciferase reporter assay indicated that the 3'‑untranslated region of PTEN can be directly targeted by miR‑198. Furthermore, miR‑198 inhibition increased the PTEN expression at the mRNA and protein levels in RB cells. In addition, PTEN mRNA expression was downregulated in RB tissues, and this downregulation was inversely associated with the expression level of miR‑198. PTEN knockdown rescued the inhibitory effects of miR‑198 underexpression on cell proliferation and invasion in RB. Notably, the downregulation of miR‑198 inactivated the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway in RB. These results demonstrated that miR‑198 may serve oncogenic roles in RB by directly targeting PTEN and regulating the PI3K/AKT signaling pathway. Hence, miR‑198 may be a promising therapeutic target for patients with RB.
Collapse
Affiliation(s)
- Dongdong Wei
- Department of Ophthalmology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Yingbin Miao
- Department of Ophthalmology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Lianxia Yu
- Department of Ophthalmology, The Second People Hospital of Dezhou, Dezhou, Shandong 253024, P.R. China
| | - Degong Wang
- Department of Ophthalmology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Yingli Wang
- Department of Ophthalmology, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
33
|
Liang YY, Huang JC, Tang RX, Chen WJ, Chen P, Cen WL, Shi K, Gao L, Gao X, Liu AG, Peng XT, Chen G, Huang SN, Fang YY, Gu YY. Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR. World J Surg Oncol 2018; 16:22. [PMID: 29394946 PMCID: PMC5797354 DOI: 10.1186/s12957-018-1320-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Background To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC). Methods Gene Expression Omnibus (GEO) microarray datasets were used to explore the miR-198-5p expression and its diagnostic value in LUSC. Real-time reverse transcription quantitative polymerase chain reaction was used to evaluate the expression of miR-198-5p in 23 formalin-fixed, paraffin-embedded (FFPE) LUSC tissues and corresponding non-cancerous tissues. The correlation between miR-198-5p expression and clinic pathological features was assessed. Meanwhile, putative target messenger RNAs of miR-198-5p were identified based on the analysis of differentially expressed genes in the Cancer Genome Atlas (TCGA) and 12 miRNA prediction tools. Subsequently, the putative target genes were sent to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Results MiR-198-5p was low expressed in LUSC tissues. The combined standard mean difference (SMD) values of miR-198-5p expression based on GEO datasets were − 0.30 (95% confidence interval (CI) − 0.54, − 0.06) and − 0.39 (95% CI − 0.83, 0.05) using fixed effect model and random effect model, respectively. The sensitivity and specificity were not sufficiently high, as the area under the curve (AUC) was 0.7749 (Q* = 0.7143) based on summarized receiver operating characteristic (SROC) curves constructed using GEO datasets. Based on the in-house RT-qPCR, miR-198-5p expression was 4.3826 ± 1.7660 in LUSC tissues and 4.4522 ± 1.8263 in adjacent normal tissues (P = 0.885). The expression of miR-198-5p was significantly higher in patients with early TNM stages (I-II) than that in cases with advanced TNM stages (III-IV) (5.4400 ± 1.5277 vs 3.5690 ± 1.5228, P = 0.008). Continuous variable-based meta-analysis of GEO and PCR data displayed the SMD values of − 0.26 (95% CI − 0.48, − 0.04) and − 0.34 (95% CI − 0.71, 0.04) based on fixed and random effect models, respectively. As for the diagnostic value of miR-198-5p, the AUC based on the SROC curve using GEO and PCR data was 0.7351 (Q* = 0.6812). In total, 542 genes were identified as the targets of miR-198-5p. The most enriched Gene Ontology terms were epidermis development among biological processes, cell junction among cellular components, and protein dimerization activity among molecule functions. The pathway of non-small cell lung cancer was the most significant pathway identified using Kyoto Encyclopedia of Genes and Genomes analysis. Conclusion The expression of miR-198-5p is related to the TNM stage. Thus, miR-198-5p might play an important role via its target genes in LUSC.
Collapse
Affiliation(s)
- Yue-Ya Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Peng Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei-Luan Cen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - An-Gui Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiao-Tong Peng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Su-Ning Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
34
|
Cimadamore A, Gasparrini S, Mazzucchelli R, Doria A, Cheng L, Lopez-Beltran A, Santoni M, Scarpelli M, Montironi R. Long Non-coding RNAs in Prostate Cancer with Emphasis on Second Chromosome Locus Associated with Prostate-1 Expression. Front Oncol 2017; 7:305. [PMID: 29312884 PMCID: PMC5732923 DOI: 10.3389/fonc.2017.00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA with transcripts longer than 200 nucleotides that lack functional open reading frames. They play various roles in human carcinoma, such as dysregulating gene expression in prostate cancer (PCa), which results in cancer initiation, development, and progression. The non-coding RNA SChLAP1 (second chromosome locus associated with prostate-1) is highly expressed in approximately 25% of PCas with higher prevalence in metastatic compared to localized PCa. Its expression is detectable non-invasively in PCa patient urine samples. Experimental data suggest that targeting SChLAP1 may represent a novel therapeutic application in PCa. This contribution focuses on the role of lncRNAs SChLAP1 expression in PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| | - Silvia Gasparrini
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| | - Roberta Mazzucchelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| | - Andrea Doria
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Universidad de Córdoba, Córdoba, Spain
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy
| |
Collapse
|
35
|
García-Casas A, García-Olmo DC, García-Olmo D. Further the liquid biopsy: Gathering pieces of the puzzle of genometastasis theory. World J Clin Oncol 2017; 8:378-388. [PMID: 29067274 PMCID: PMC5638713 DOI: 10.5306/wjco.v8.i5.378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the major cause of mortality in cancer disease and still constitutes one of the most controversial mechanism, not yet fully understood. What is almost beyond doubt is that circulatory system is crucial for cancer propagation. Regarding this system, much attention has been recently paid to liquid biopsy. This technique is aimed to detect circulating tumor cells (CTCs) and circulating nucleic acids so it can be used as a tool for diagnostic, prognostic and follow-up of patients. Whereas CTCs tend to be scarce in serum and plasma from cancer patient, abundant circulating nucleic acids can be detected in the same location. This fact, together with the genetic origin of cancer, stands out the relevance of circulating nucleic acids and shed light into the role of nucleic acids as drivers of metastasis, a recently discovered phenomenon called Genometastasis. This innovative theory supports the transfer of oncogenes from cancer cells to normal and susceptible cells located in distant target organs through circulatory system. What is more, many biological processes haven been described to deliver and secrete circulating nucleic acids into the circulation which can allow such horizontal transfer of oncogenes. In this review, we focus not only on these mechanisms but also we demonstrate its putative role in cancer propagation and give insights about possible therapeutic strategies based on this theory. Our objective is to demonstrate how findings about cell-to-cell communications and previous results can agree with this unprecedented theory.
Collapse
Affiliation(s)
| | - Dolores C García-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada(CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Damián García-Olmo
- Department of Surgery, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, 28050 Madrid, Spain
| |
Collapse
|
36
|
Liang Y, Wang H, Sun Y, Chen S, Wang H, Huang R, Zhao X, Fu W, Yang C. miR-198-induced upregulation of Livin may be associated with the prognosis and contribute to the oncogenesis of lung adenocarcinoma. Oncol Rep 2017; 38:2096-2104. [PMID: 28765921 PMCID: PMC5652946 DOI: 10.3892/or.2017.5866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Livin, a member of the inhibitor of apoptosis protein (IAP) family, is expressed at a high level in lung adenocarcinoma and influences the progression of cancer, and its response to chemotherapy and radiotherapy. Aberrant microRNA (miRNA) expression has also been associated with cancer initiation and development. However, the clinical significance of Livin and its relationship with miRNAs in lung adenocarcinoma are still unclear. In the present study, the expression level of Livin in 90 pairs of lung adenocarcinoma and their adjacent tissues were detected by immunohistochemistry staining. Spearman correlation and Kaplan-Meier, univariate and multivariate analyses were applied to evaluate the correlation between the expression of Livin and clinical characteristics. With the integration of bioinformatics analysis and dual-luciferase reporter gene assays, we identified the miRNA that can target Livin mRNA. The functional effects of miRNA-mediated Livin knockdown were assessed by Cell Counting Kit-8 (CCK-8) and apoptosis assays, and cell cycle analysis. The present study revealed that Livin was upregulated in lung adenocarcinoma tissues and may be associated with the poor prognosis in lung adenocarcinoma patients. The overexpression of Livin is partly caused by the downregulation of miR-198. Further exploration revealed that miRNA-198-mediated silencing of Livin significantly inhibited cell growth and enhanced apoptosis of A549 cells, accompanied by marked upregulation of caspase-3. Finally, we observed that the miR-198 overexpression and Livin neutralization had similar effects on improving cisplatin chemosensitivity in A549 cells. Overall, these findings suggest that Livin has the potential to become a biomarker for predicting the prognosis of lung adenocarcinoma and may provide a promising strategy for assisting chemotherapy of lung adenocarcinoma through the miR-198/Livin/caspase-3 regulatory network.
Collapse
Affiliation(s)
- Yicheng Liang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuanyuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sheng Chen
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haoyou Wang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rong Huang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunlu Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
37
|
Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene 2017; 36:4014-4024. [PMID: 28288142 PMCID: PMC5509519 DOI: 10.1038/onc.2017.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
High-grade serous (HGS) ovarian cancer accounts for 90% of all ovarian cancer-related deaths. However, factors that drive HGS ovarian cancer tumor growth have not been fully elucidated. In particular, comprehensive analysis of the metabolic requirements of ovarian cancer tumor growth has not been performed. By analyzing The Cancer Genome Atlas mRNA expression data for HGS ovarian cancer patient samples, we observed that six enzymes of the folic acid metabolic pathway were overexpressed in HGS ovarian cancer samples compared with normal ovary samples. Systematic knockdown of all six genes using short hairpin RNAs (shRNAs) and follow-up functional studies demonstrated that serine hydroxymethyl transferase 1 (SHMT1) was necessary for ovarian cancer tumor growth and cell migration in culture and tumor formation in mice. SHMT1 promoter analysis identified transcription factor Wilms tumor 1 (WT1) binding sites, and WT1 knockdown resulted in reduced SHMT1 transcription in ovarian cancer cells. Unbiased large-scale metabolomic analysis and transcriptome-wide mRNA expression profiling identified reduced levels of several metabolites of the amino sugar and nucleotide sugar metabolic pathways, including sialic acid N-acetylneuraminic acid (Neu5Ac), and downregulation of pro-oncogenic cytokines interleukin-6 and 8 (IL-6 and IL-8) as unexpected outcomes of SHMT1 loss. Overexpression of either IL-6 or IL-8 partially rescued SHMT1 loss-induced tumor growth inhibition and migration. Supplementation of culture medium with Neu5Ac stimulated expression of IL-6 and IL-8 and rescued the tumor growth and migratory phenotypes of ovarian cancer cells expressing SHMT1 shRNAs. In agreement with the ovarian tumor-promoting role of Neu5Ac, treatment with Neu5Ac-targeting glycomimetic P-3Fax-Neu5Ac blocked ovarian cancer growth and migration. Collectively, these results demonstrate that SHMT1 controls the expression of pro-oncogenic inflammatory cytokines by regulating sialic acid Neu5Ac to promote ovarian cancer tumor growth and migration. Thus, targeting of SHMT1 and Neu5Ac represents a precision therapy opportunity for effective HGS ovarian cancer treatment.
Collapse
|
38
|
Exosomes as miRNA Carriers: Formation-Function-Future. Int J Mol Sci 2016; 17:ijms17122028. [PMID: 27918449 PMCID: PMC5187828 DOI: 10.3390/ijms17122028] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs). miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes’ formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine.
Collapse
|
39
|
Huang WT, Wang HL, Yang H, Ren FH, Luo YH, Huang CQ, Liang YY, Liang HW, Chen G, Dang YW. Lower expressed miR-198 and its potential targets in hepatocellular carcinoma: a clinicopathological and in silico study. Onco Targets Ther 2016; 9:5163-80. [PMID: 27578984 PMCID: PMC5001667 DOI: 10.2147/ott.s108828] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the clinicopathological value and potential roles of microRNA-198 (miR-198) in hepatocellular carcinoma (HCC). Methods Ninety-five formalin-fixed paraffin-embedded HCC and the para-cancerous liver tissues were gathered. Real-time reverse transcription quantitative polymerase chain reaction was applied to determine the miR-198 expression. The association between the miR-198 expression and clinicopathological features was examined. Meanwhile, potential target messenger RNAs of miR-198 in HCC were obtained from 14 miRNA prediction databases and natural language processing method, in which we pooled the genes related to the tumorigenesis and progression of HCC and classified them by their frequency. The selected target genes were finally analyzed in the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway. Results miR-198 expression was significantly lower in HCC than that in adjacent noncancerous liver tissues (1.30±0.72 vs 2.01±0.58, P<0.001). Low miR-198 expression was also correlated to hepatitis C virus infection (r=−0.48, P<0.001), tumor capsular infiltration (r=−0.43, P<0.001), metastasis (r=−0.26, P<0.010), number of tumor nodes (r=−0.25, P=0.013), vaso-invasion (r=−0.24, P=0.017), and clinical tumor node metastasis stage (r=−0.23, P=0.024). Altogether, 1,048 genes were achieved by the concurrent prediction from at least four databases and natural language processing indicated 1,800 genes for HCC. Further, 127 overlapping targets were further proceeded with for pathway analysis. The most enriched Gene Ontology terms in the potential target messenger RNAs of miR-198 were cell motion, cell migration, cell motility, and regulation of cell proliferation in biological process; organelle lumen, membrane-enclosed lumen, and nuclear lumen in cellular component; and enzyme binding, protein domain-specific binding, and protein kinase activity in molecular function. Kyoto Encyclopedia of Genes and Genomes analysis showed that these target genes were obviously involved in focal adhesion and pathways in cancer. Conclusion Lower expression of miR-198 was related to several clinicopathological parameters in HCC patients. miR-198 might play a regulatory role through its target genes in the development of HCC.
Collapse
Affiliation(s)
| | | | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cohen A, Burgos-Aceves MA, Smith Y. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer. Transl Lung Cancer Res 2016; 5:322-30. [PMID: 27413713 DOI: 10.21037/tlcr.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers.
Collapse
Affiliation(s)
- Amit Cohen
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Mario Alberto Burgos-Aceves
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Yoav Smith
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| |
Collapse
|
41
|
Pinweha P, Rattanapornsompong K, Charoensawan V, Jitrapakdee S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput Struct Biotechnol J 2016; 14:223-33. [PMID: 27358718 PMCID: PMC4915959 DOI: 10.1016/j.csbj.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- ACC, acetyl-CoA carboxylase
- ACL, ATP-citrate lyase
- BRCA1, breast cancer type 1 susceptibility protein
- Cancer
- FAS, fatty acid synthase
- FH, fumarate hydratase
- G6PD, glucose-6-phosphate dehydrogenase
- GDH, glutamate dehydrogenase
- GLS, glutaminase
- GLUT, glucose transporter
- HIF1α, hypoxia inducible factor 1α
- HK, hexokinase
- IDH, isocitrate dehydrogenase
- MCT, monocarboxylic acid transporter
- ME, malic enzyme
- Metabolism
- MicroRNA
- Oncogene
- PC, pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PDK, pyruvate dehydrogenase kinase
- PEP, phosphoenolpyruvate
- PEPCK, phosphoenolpyruvate carboxykinase
- PFK, phosphofructokinase
- PGK, phosphoglycerate kinase (PGK)
- PHGDH, phosphoglycerate dehydrogenase
- PKM, muscle-pyruvate kinase
- PPP, pentose phosphate pathway
- PSAT, phosphoserine aminotransferase
- PSPH, phosphoserine phosphatase
- SDH, succinate dehydrogenase
- SHMT, serine hydroxymethyl transferase
- SREBP1, sterol regulatory element binding protein 1
- TCA, tricarboxylic acid
- TFs, transcription factors
- Transcriptional regulation network
- c-MYC, V-myc avian myelocytomatosis viral oncogene homolog
- miR/miRNA, LDH, lactate dehydrogenase micro RNA
- p53, tumor protein p53
Collapse
Affiliation(s)
- Pannapa Pinweha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|