1
|
Xu L, Pan F, Guo Z. TIPE2: A Candidate for Targeting Antitumor Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:755-763. [PMID: 38377476 DOI: 10.4049/jimmunol.2300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
TNF-α-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a recently discovered negative regulator of innate and adaptive immunity. TIPE2 is expressed in a wide range of tissues, both immune and nonimmune, and is implicated in the maintenance of immune homeostasis within the immune system. Furthermore, TIPE2 has been shown to play a pivotal role in the regulation of inflammation and the development of tumor. This review focuses on the structural characteristics, expression patterns, and functional roles of TIPE proteins, with a particular emphasis on the role and underlying mechanisms of TIPE2 in immune regulation and its involvement in different diseases. However, the current body of evidence is still limited in providing a comprehensive understanding of the complex role of TIPE2 in the human body, warranting further investigation to elucidate the possible mechanisms and functions of TIPE2 in diverse disease contexts.
Collapse
Affiliation(s)
- Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Chang CT, Chen YH, Shyur LF. Phytocompounds from essential oil of Mentha aquatica L. cv. Lime prevent vemurafenib-promoted skin carcinogenesis via inhibiting HRAS Q61L keratinocytes and reprogramming macrophage activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155161. [PMID: 37939409 DOI: 10.1016/j.phymed.2023.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Twenty to thirty percent of patients taking BRAF inhibitors such as vemurafenib (PLX4032) for melanoma develop cutaneous squamous cell carcinomas. PURPOSE This study aimed to elucidate the chemopreventive effect of essential oil from Mentha aquatica L. cv. Lime (EO) and its major constituents, limonene and carvone (L + C) that made up 45.68% of the EO, against PLX4032-induced cutaneous side effects. METHODS PLX4032 accelerated skin papilloma formation and keratinocyte HRAS mutation in 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis mouse model was used to evaluate the in vivo bioefficacy of EO and L + C. The effects and molecular mechanisms of EO and L + C on deregulating mouse PDVHRASQ61L keratinocyte activities were demonstrated using a spectrum of bioactivity assays, western blotting, immunochemistry, and keratinocyte-macrophage co-culture assay. RESULTS Treatment with EO suppressed colony formation ability, cell migration, invasion, and induced G2/M cell-cycle arrest and apoptosis in PDVHRASQ61L keratinocytes, and L + C treatment inhibited colony formation, cell migration and invasion of PDV cells. In mouse skin irritated with DMBA/TPA (DT group) or DMBA/TPA with PLX4032 (DTP group), topical application of EO and L + C significantly delayed papilloma appearance and reduced papilloma incidence compared to DT or DTP controls. Histopathology results showed that EO and L + C treatment attenuated K14+ keratinocyte proliferation and paradoxical MAPK activation, and shifted the macrophage population from M2 (CD163+) to M1 (iNOS+) in the mouse skin microenvironment. The conditioned medium of EO or L + C pre-treated PDV keratinocytes promoted M0 macrophages to differentiate from THP-1 cells into M1-like macrophages. CONCLUSION This study demonstrates that EO and L + C in combination prevent PLX4032-induced cutaneous side-effects and skin carcinogenesis in mice through reprogramming the macrophage cell population and inhibiting keratinocyte activity. Both mint EO and the natural products L + C can be considered to be effective chemopreventive agents that might be useful in reducing cutaneous lesions in human patients administrated with BRAF inhibitors.
Collapse
Affiliation(s)
- Chih-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsin Chen
- Taichung District Research and Extension Station, Council of Agriculture, Executive Yuan, Changhua 515, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung 401, Taiwan.
| |
Collapse
|
3
|
TIPE2 attenuates neuroinflammation and brain injury through Bcl-2/Bax/cleaved caspase-3 apoptotic pathways after intracerebral hemorrhage in mice. Brain Res Bull 2022; 191:1-8. [PMID: 36179971 DOI: 10.1016/j.brainresbull.2022.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a serious disease with high mortality and morbidity, and effective treatment is limited. A large amount of evidence suggests that the inflammatory response contributes to secondary brain damage following ICH. TIPE2 is an essential negative regulator of both innate and adaptive immunity, and depletion of TIPE2 causes inflammatory disease. However, the possible role of TIPE2 following ICH has not been reported. METHODS In this study, we investigated TIPE2 levels and inflammation in microglia treated with erythrocyte lysate in vitro. In addition, we analyzed the role of Bcl-2/Bax/cleaved caspase-3 apoptotic pathways in ICH mice. Furthermore, we observed proinflammatory cytokine production, BBB disruption, cerebral water content and neurological damage in ICH mice. RESULTS We found that TIPE2 levels were significantly decreased in erythrocyte lysate-treated microglia compared to control microglia.Upregulation of TIPE2 decreased microglia activation and cytokine production and accelerated brain damage in ICH mice. Furthermore, upregulation of TIPE2 decreased the higher ratio of Blc-2/Bax and increased cleaved caspase-3 levels in ICH mice. In addition, upregulation of TIPE2 attenuated proinflammatory cytokine production, BBB disruption, and severe brain inflammation after ICH. CONCLUSION These results demonstrated that TIPE2 was negatively correlated with the pathogenesis of ICH, which prevented brain injury and attenuated deleterious inflammatory responses following ICH. TIPE2 might serve as a novel target for ICH therapy.
Collapse
|
4
|
Hooper PB, Farberg AS, Fitzgerald AL, Siegel JJ, Rackley BB, Prasai A, Kurley SJ, Goldberg MS, Litchman GH. Real-world Evidence Shows Clinicians Appropriately Use the Prognostic 40-gene Expression Profile (40-GEP) Test for High-risk Cutaneous Squamous Cell Carcinoma (cSCC) Patients. Cancer Invest 2022; 40:911-922. [PMID: 36073945 DOI: 10.1080/07357907.2022.2116454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Treatment decisions for patients with cutaneous squamous cell carcinoma (cSCC) are traditionally based upon clinicopathologic risk factors and staging systems. Due to the accuracy limitations of these resources in predicting poor outcomes, there is a clinically significant need for more accurate methods of risk assessment. The 40-gene expression profile (40-GEP) test was developed to augment metastatic risk prediction of high-risk cSCC patients and has been validated in two independent, multi-center studies involving over 1,000 patients. This study substantiates that the 40-GEP is appropriately utilized by clinicians and that the personalized risk-stratification results are impactful in guiding risk-aligned patient management.
Collapse
Affiliation(s)
- Perry B Hooper
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Guimarães GR, Almeida PP, de Oliveira Santos L, Rodrigues LP, de Carvalho JL, Boroni M. Hallmarks of Aging in Macrophages: Consequences to Skin Inflammaging. Cells 2021; 10:cells10061323. [PMID: 34073434 PMCID: PMC8228751 DOI: 10.3390/cells10061323] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is our largest organ and the outermost protective barrier. Its aging reflects both intrinsic and extrinsic processes resulting from the constant insults it is exposed to. Aging in the skin is accompanied by specific epigenetic modifications, accumulation of senescent cells, reduced cellular proliferation/tissue renewal, altered extracellular matrix, and a proinflammatory environment favoring undesirable conditions, including disease onset. Macrophages (Mφ) are the most abundant immune cell type in the skin and comprise a group of heterogeneous and plastic cells that are key for skin homeostasis and host defense. However, they have also been implicated in orchestrating chronic inflammation during aging. Since Mφ are related to innate and adaptive immunity, it is possible that age-modified skin Mφ promote adaptive immunity exacerbation and exhaustion, favoring the emergence of proinflammatory pathologies, such as skin cancer. In this review, we will highlight recent findings pertaining to the effects of aging hallmarks over Mφ, supporting the recognition of such cell types as a driving force in skin inflammaging and age-related diseases. We will also present recent research targeting Mφ as potential therapeutic interventions in inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Gabriela Rapozo Guimarães
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Palloma Porto Almeida
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leandro de Oliveira Santos
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leane Perim Rodrigues
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
| | - Juliana Lott de Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Correspondence:
| |
Collapse
|
6
|
Sun Y, Cao S, Li Z, Liu X, Xu J, Tian Y, Shen S, Zhou Y. A novel prognostic factor TIPE2 inhibits cell proliferation and promotes apoptosis in pancreatic ductal adenocarcinoma (PDAC). Int J Med Sci 2021; 18:2051-2062. [PMID: 33850476 PMCID: PMC8040395 DOI: 10.7150/ijms.51497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly discovered negative immune regulator. Studies have shown that TIPE2 causes significant malignant biological effects and is differentially expressed in various malignant tumors. However, the expression and roles of TIPE2 in pancreatic ductal adenocarcinoma (PDAC) are largely unknown. Materials and Methods: The expression of TIPE2 in PDAC tissues was assessed by immunohistochemistry, qPCR and western blot analysis and related clinicopathological parameters including survival time were analyzed. After overexpression of TIPE2, cell proliferation and apoptosis analysis were conducted, and the associated underlying molecular mechanism was also explored. Results: In the present study, TIPE2 was upregulated in early PDAC tissues, and TIPE2 expression decreased as the tumor progressed (P<0.001). TIPE2 expression was negatively associated with tumor size, TNM stage and metastasis of lymph nodes. Furthermore, as an independent risk factor, TIPE2 could be used to predict the survival of patients with PDAC (P=0.035). TIPE2 overexpression significantly suppressed the viability, proliferation and induced apoptosis of PDAC cells by inhibiting survivin and increasing the activity of caspase3/7. Conclusions: For the first time, this study demonstrated that TIPE2 is an independent prognostic factor in PDAC. TIPE2 inhibited the proliferation and induced apoptosis via regulating survivin/caspase3/7 signaling pathway. These results indicated that TIPE2 is a potential biomarker for predicting the prognosis of PDAC patients and plays a pivotal role in the progression of PDAC.
Collapse
Affiliation(s)
- Yuqi Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaodong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jinxiang Xu
- Department of Hepatology, The First People's Hospital of Luoyang City, Luoyang, Henan, People's Republic of China
| | - Yulong Tian
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shuai Shen
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
7
|
Amôr NG, Santos PSDS, Campanelli AP. The Tumor Microenvironment in SCC: Mechanisms and Therapeutic Opportunities. Front Cell Dev Biol 2021; 9:636544. [PMID: 33634137 PMCID: PMC7900131 DOI: 10.3389/fcell.2021.636544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
8
|
Gu Z, Cui X, Sun P, Wang X. Regulatory Roles of Tumor Necrosis Factor-α-Induced Protein 8 Like-Protein 2 in Inflammation, Immunity and Cancers: A Review. Cancer Manag Res 2020; 12:12735-12746. [PMID: 33364825 PMCID: PMC7751774 DOI: 10.2147/cmar.s283877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays a vital role in regulating inflammatory responses, immune homeostasis, and cancer development. Over the last decade, studies have shown that TIPE2 protein is differentially expressed in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of inflammatory responses and immune homeostasis, and change the basic characteristics of cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and prognosis of various human diseases, this review will focus on the expression pattern, structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers.
Collapse
Affiliation(s)
- Zhengzhong Gu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
9
|
Wysong A, Newman JG, Covington KR, Kurley SJ, Ibrahim SF, Farberg AS, Bar A, Cleaver NJ, Somani AK, Panther D, Brodland DG, Zitelli J, Toyohara J, Maher IA, Xia Y, Bibee K, Griego R, Rigel DS, Meldi Plasseraud K, Estrada S, Sholl LM, Johnson C, Cook RW, Schmults CD, Arron ST. Validation of a 40-gene expression profile test to predict metastatic risk in localized high-risk cutaneous squamous cell carcinoma. J Am Acad Dermatol 2020; 84:361-369. [PMID: 32344066 DOI: 10.1016/j.jaad.2020.04.088] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Current staging systems for cutaneous squamous cell carcinoma (cSCC) have limited positive predictive value for identifying patients who will experience metastasis. OBJECTIVE To develop and validate a gene expression profile (GEP) test for predicting risk for metastasis in localized, high-risk cSCC with the goal of improving risk-directed patient management. METHODS Archival formalin-fixed paraffin-embedded primary cSCC tissue and clinicopathologic data (n = 586) were collected from 23 independent centers in a prospectively designed study. A GEP signature was developed using a discovery cohort (n = 202) and validated in a separate, nonoverlapping, independent cohort (n = 324). RESULTS A prognostic 40-GEP test was developed and validated, stratifying patients with high-risk cSCC into classes based on metastasis risk: class 1 (low risk), class 2A (high risk), and class 2B (highest risk). For the validation cohort, 3-year metastasis-free survival rates were 91.4%, 80.6%, and 44.0%, respectively. A positive predictive value of 60% was achieved for the highest-risk group (class 2B), an improvement over staging systems, and negative predictive value, sensitivity, and specificity were comparable to staging systems. LIMITATIONS Potential understaging of cases could affect metastasis rate accuracy. CONCLUSION The 40-GEP test is an independent predictor of metastatic risk that can complement current staging systems for patients with high-risk cSCC.
Collapse
Affiliation(s)
- Ashley Wysong
- University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Aaron S Farberg
- Icahn School of Medicine at Mount Sinai, New York, New York; Arkansas Dermatology Skin Cancer Center, Little Rock, Arkansas
| | - Anna Bar
- Oregon Health & Science University, Portland, Oregon
| | | | | | - David Panther
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | - David G Brodland
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | - John Zitelli
- Zitelli and Brodland, P.C. Skin Cancer Center, Pittsburgh, Pennsylvania
| | | | - Ian A Maher
- University of Minnesota, Minneapolis, Minnesota
| | - Yang Xia
- Brooke Army Medical Center, San Antonio, Texas
| | - Kristin Bibee
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | - Sarah Estrada
- Castle Biosciences, Inc, Phoenix, Arizona; Affiliated Dermatology, Scottsdale, Arizona
| | | | | | | | | | - Sarah T Arron
- University of California San Francisco, San Francisco, California.
| |
Collapse
|
10
|
Li H, Li L, Mei H, Pan G, Wang X, Huang X, Wang T, Jiang Z, Zhang L, Sun L. Antitumor properties of triptolide: phenotype regulation of macrophage differentiation. Cancer Biol Ther 2019; 21:178-188. [PMID: 31663424 DOI: 10.1080/15384047.2019.1679555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs), which generally exhibit an M2-like phenotype, play a critical role in tumor development. Triptolide exerts a unique bioactive spectrum of anticancer activities. The aim of this study was to determine whether triptolide has any effect on the activation of TAMs and the production of tumor-promoting mediators. ICR-1 mice with azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumors and BALB/c mice co-inoculated with 4T1 cells and M2-polarized RAW264.7 cells were used to examine whether the inhibitory effect of triptolide on tumor progression was mediated by the targeting of TAMs. Real-time PCR, Western blot, immunofluorescence staining, and flow cytometry assays were performed to determine the expression of cell surface markers and cytokine production. The results showed that triptolide inhibited macrophage differentiation toward the M2 phenotype and abolished M2 macrophage-mediated tumor progression. Furthermore, triptolide inhibited the expression of M2 markers, such as CD206, Arginase 1, and CD204, and inhibited the secretion of anti-inflammatory cytokines. Thus our study indicated that triptolide selectively inhibited the functions of M2-polarized macrophages and TAMs, and this inhibitory effect of triptolide on TAM viability, differentiation, and cytokine production might elucidate the major mechanisms underlying its antitumor activity. Our findings provide important information for the potential clinical application of triptolide in cancer therapy.
Collapse
Affiliation(s)
- Han Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liping Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Guofeng Pan
- Department of TCM, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing, China
| | - Xinzhi Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Ji J, Zhang YY, Fan YC. TIPE2 as a potential therapeutic target in chronic viral hepatitis. Expert Opin Ther Targets 2019; 23:485-493. [PMID: 30995133 DOI: 10.1080/14728222.2019.1608948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor necrosis factor-α-induced protein-8 like-2 (TIPE2) is a novel negative regulator of innate and adaptive immune responses by binding to caspase-8. The binding of TIPE2 and caspase-8 can inhibit the activity of activating protein-1(AP-1) and nuclear factor-κB (NF-κB), ultimately promoting Fas-induced apoptosis in immune cells. Therefore, TIPE2-caspase-8-NF-κB signaling might serve as a biomarker and a potential target for therapeutic intervention. Areas covered: This review summarizes the biological functions of TIPE2 in the regulation of immune homeostasis and the underlying mechanism by which TIPE2 is regulated in the human immune response. The molecular pathway of TIPE2-caspase-8 signaling in chronic infections of hepatitis B virus and hepatitis C virus is also explained. Expert opinion: Considering the essential role of TIPE2 in linking immunity and inflammation, this protein may be a promising therapeutic target in chronic viral hepatitis. However, studies are necessary to elucidate the molecular mechanism of TIPE2 in the immunogenesis of viral hepatitis and to develop potential interventions for breaking immune tolerance in chronic hepatitis B virus infection. Additional studies are required to understand how TIPE2 binds to caspase-8.
Collapse
Affiliation(s)
- Jian Ji
- a Department of Clinical Laboratory, Qilu Hospital , Shandong University , Jinan , China
| | - Yuan-Yuan Zhang
- b Department of Neurology , Jinan Central Hospital affiliated to Shandong University , Jinan , China
| | - Yu-Chen Fan
- c Department of Hepatology , Qilu Hospital of Shandong University , Jinan , China
- d Department of Immunology , Shandong University School of Basic Medical Science , Jinan , China
| |
Collapse
|
12
|
Hu G, Liang L, Liu Y, Liu J, Tan X, Xu M, Peng L, Zhai S, Li Q, Chu Z, Zeng W, Xia Y. TWEAK/Fn14 Interaction Confers Aggressive Properties to Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:796-806. [DOI: 10.1016/j.jid.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/08/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
|
13
|
Acharya S, Prabhu P, Patil V, Acharya AB, Desai A, Nikhil K. Tumor necrosis factor-like weak inducer of apoptosis expression in healthy oral mucosa, oral dysplasia and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2019; 23:369-377. [PMID: 31942116 PMCID: PMC6948056 DOI: 10.4103/jomfp.jomfp_151_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been implicated in the pathogenesis of cancer, as it participates in the progression of internal malignancies. However, its role in the biology of squamous cell carcinoma (SCC) is uncertain. Studies regarding TWEAK in SCC have shown inconsistent results. We aimed to study the expression of TWEAK in healthy oral mucosa, oral dysplastic lesions and in oral SCC (OSCC). Methods: Immunohistochemistry for TWEAK was performed on one hundred oral mucosal tissues, healthy control (HC) (n = 20), oral dysplasia (OD) (n = 20) and OSCC (n = 60). Staining intensity, extent of staining (ES) and immunoreactive Score (IRS) were assessed for each sample. Kruskal–Wallis ANOVA, Mann–Whitney U, Chi-square and Spearman's rank correlation coefficient were applied. Results: TWEAK was expressed in 55% of HC, 90% of OD and in all cases of OSCC, with variable intensities. A significant difference in the ES and IRS of TWEAK was noted among the three groups. ES and IRS were highest in OSCC group. ES of TWEAK was significantly higher at invasive tumor front (ITF) than in the whole tumor, with a significant positive correlation. TWEAK expression showed a significant association with invasive front grading, pattern of invasion and surgical margins of OSCC. Conclusions: TWEAK may contribute to the progression of OSCC. It might also sustain altered differentiation, invasion and migration of tumor cells at ITF.
Collapse
Affiliation(s)
- Swetha Acharya
- Department of Oral Pathology and Microbiology, SDM College of Dental Sciences and Hospital, A Constituent Unit of Shri Dharmasthala Manjunatheswara University, Dharwad, Karnataka, India
| | - Prashant Prabhu
- Department of Oral Pathology and Microbiology, SDM College of Dental Sciences and Hospital, A Constituent Unit of Shri Dharmasthala Manjunatheswara University, Dharwad, Karnataka, India
| | - Vidya Patil
- Department of Biochemistry, SDM College of Dental Sciences and Hospital, A Constituent Unit of Shri Dharmasthala Manjunatheswara University, Dharwad, Karnataka, India
| | - Anirudh B Acharya
- Department of Periodontics, College of Dentistry, Majmaah University, Zulfi, Kingdom of Saudi Arabia
| | - Anil Desai
- Department of Oral and Maxillofacial Surgery, SDM College of Dental Sciences and Hospital, A Constituent Unit of Shri Dharmasthala Manjunatheswara University, Dharwad, Karnataka, India
| | - Krithi Nikhil
- Consultant, Biostatistician, Dharwad, Karnataka, India
| |
Collapse
|
14
|
Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Lett 2018; 432:260-271. [DOI: 10.1016/j.canlet.2018.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
|
15
|
Jia W, Li Z, Chen J, Sun L, Liu C, Wang S, Chi J, Niu J, Lai H. TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC). Cell Biosci 2018; 8:49. [PMID: 30186591 PMCID: PMC6119276 DOI: 10.1186/s13578-018-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly described negative immune regulator and is closely associated with various tumors. However, the expression and roles of TIPE2 in PTC is unknown. Results In the present study, TIPE2 upregulation in PTC tissues was found to be negatively associated with tumor size, capsule infiltration, peripheral infiltration and tumor T stage, which could be used to predict tumor invasiveness. TIPE2 overexpression significantly suppressed the viability, proliferation, migration and invasion of PTC cells. Moreover, TIPE2 suppressed tumor invasiveness by inhibiting Rac1, leading to decreased expression of uPA and MMP9. Conclusions These results indicate that TIPE2 is a potential biomarker for predicting tumor aggressiveness and suppresses tumor invasiveness in a Rac1-dependent manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyu Jia
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong People's Republic of China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong People's Republic of China
| | - Zequn Li
- 3Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Junyu Chen
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Lei Sun
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chuanqian Liu
- 5Department of Traditional Chinese Medicine, The First People's Hospital of Jining, Jining, Shandong People's Republic of China
| | - Shaping Wang
- Clinical Laboratory, Weihai Wendeng Central Hospital, Weihai, Shandong People's Republic of China
| | - Jingwei Chi
- 7Key Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Jun Niu
- 8Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong People's Republic of China
| | - Hong Lai
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
16
|
Abstract
The published during last few years data concerning communicative role of lectins (proteins and their complexes which recognize carbohydrates, glycoconjugates and their patterns) in on-duty supporting and increasing anticancer status of human immunity are analyzed. Examples of lectin-(glycoconjugate pattern) strategies, approaches and tactic variants in study and development of anticancer treatments, principle variants of therapy, possible vaccines in 35 cases of blood connected tumors (leukemia, lymphomas, others), solid tumors (carcinomas, sarcoma, cancers of vaginal biotopes, prostate, bladder, colon, other intestinal compartments, pancreas, liver, kidneys, others) and cancer cell lines are described and systemized. The list of mostly used communicative lectins (pattern recognition receptors, their soluble forms, other soluble lectins possessing specificities of importance) involving in key intercellular cascades and pathway co-functioning is presented. The regulation of resulting expression of distinct active lectins (available and hetero/di/oligomeric forms) and their interaction to adequate glycoconjugate patterns as well as influence distribution of co-functioning lectins and antigens CD between populations and subpopulations of antigen-presented cells (dendritic cells cDC, mDC, moDC, pDC; macrophages M2 and M1), mucosal M-cells, NK-cells play key role for choice and development of anticancer complex procedures increasing innate and innate-coupled immune responses. Prospects of (receptor lectin)-dependent intercellular communications and targeting glycoconjugate constructions into innate immunity cells for therapy of cancer and development of anticancer vaccines are evaluated and discussed.
Collapse
|
17
|
Zhao Y, Wang Y, Zhu MS, Han WM, Li Z, Hong SF, Yin P, Zhuang GH, Qi ZQ. Expression Pattern of Tumor Necrosis Factor-α-Induced Protein 8-Like 2 in Acute Rejection of Cardiac Allograft. Transplant Proc 2018; 50:293-298. [PMID: 29407324 DOI: 10.1016/j.transproceed.2017.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Tumor necrosis factor-α-induced protein-8 like-2 (TIPE2) is a negative regulator of innate immunity and cellular immunity, yet the expression pattern of TIPE2 in acute rejection of cardiac allograft remain enigmatic. METHODS We developed cardiac transplantation models and divided into 3 groups: a naive group, a syngeneic group, and an allogeneic group. Then, we detected the messenger RNA and protein of TIPE2 in cardiac allografts. Real-time polymerase chain reaction showed expression of CD4 and CD8 in the donor heart, and immunofluorescence assay revealed the association between T cells and TIPE2. RESULTS In our study, we first found that the expression of TIPE2 in cardiac allografts is upregulated compared with the syngeneic control, and increases in a time-dependent manner. The immunocytochemistry of heart grafts revealed a strong expression of TIPE2 in the inflammatory cells, but not in the cardiomyocytes. Finally, we proved that CD4+ and CD8+ T cells infiltrated cardiac allografts abundantly, which express ample TIPE2. CONCLUSIONS The upregulated expression of TIPE2 in cardiac allografts, mainly came from T cells, which infiltrated the donor heart. This finding indicates that there may be an association between TIPE2 and acute cardiac allograft rejection.
Collapse
Affiliation(s)
- Y Zhao
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China; Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Research Institute of Digestive Disease, Xiamen, Fujian, China
| | - Y Wang
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China; Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Fujian, China
| | - M S Zhu
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China
| | - W M Han
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China
| | - Z Li
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China
| | - S F Hong
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China
| | - P Yin
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - G H Zhuang
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China.
| | - Z Q Qi
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China.
| |
Collapse
|
18
|
Liu ZJ, Liu HL, Zhou HC, Wang GC. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells. Oncol Res 2017; 24:255-61. [PMID: 27656836 PMCID: PMC7838627 DOI: 10.3727/096504016x14666990347356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| | | | | | | |
Collapse
|
19
|
Wang K, Ren Y, Liu Y, Zhang J, He JJ. Tumor Necrosis Factor (TNF)-α-Induced Protein 8-like-2 (TIPE2) Inhibits Proliferation and Tumorigenesis in Breast Cancer Cells. Oncol Res 2017; 25:55-63. [PMID: 28081733 PMCID: PMC7840691 DOI: 10.3727/096504016x14719078133320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α)-induced protein 8-like-2 (TNFAIP8L2 or TIPE2), a member of the tumor necrosis TNFAIP8 family, was found to be involved in the development and progression of several tumors. However, to date, the role of TIPE2 in breast cancer is still unclear. Thus, the aim of this study is to explore the role of TIPE2 in breast cancer. Our results indicated that TIPE2 expression was significantly decreased in human breast cancer tissue and cell lines. Overexpression of TIPE2 inhibited the proliferation in vitro and tumor xenograft growth in vivo. TIPE2 also inhibited the migration/invasion of breast cancer cells through preventing the epithelial-to-mesenchymal transition (EMT) phenotype. Mechanically, TIPE2 inhibited the expression of β-catenin, cyclin D1, and c-Myc in breast cancer cells. In conclusion, our findings show that TIPE2 may play an important role in breast cancer cell proliferation, invasion, and tumorigenesis in vivo. Therefore, TIPE2 may be a potential molecular target for the treatment of breast cancer.
Collapse
|
20
|
Adenovirus-mediated TIPE2 overexpression inhibits gastric cancer metastasis via reversal of epithelial-mesenchymal transition. Cancer Gene Ther 2017; 24:180-188. [PMID: 28186089 DOI: 10.1038/cgt.2017.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2; also termed TIPE2) has been shown to be involved in both the immune-negative modulation and cancer. We previously found that TIPE2 is lost in human gastric cancer, and TIPE2 restoration suppresses gastric cancer growth by induction of apoptosis and impairment of protein kinase B (PKB/AKT) and extracellular signal-regulated kinase-1/2 (ERK1/2) signaling. However, its correlation with epithelial-mesenchymal transition (EMT) in gastric cancer is largely elusive. In the present report, we carried out a gain-of-function study in AGS and HGC-27 human gastric cancer cells by adenovirus-mediated human TIPE2 gene transfer (AdVTIPE2). We then examined the effects of AdVTIPE2 on in vitro migration and invasion of AGS and HGC-27 tumor cells by wound-healing assay and Transwell invasion assay, respectively. We also investigated the effects of AdVTIPE2 on in vivo lung metastasis of AGS and HGC-27 tumor cells by intravenous (i.v.) injection in athymic BALB/c nude mice. We demonstrated that AdVTIPE2 remarkably suppressed the migratory, invasive and metastatic potential of AGS and HGC-27 tumor cells in vitro and in vivo in BALB/c nude mouse model. Mechanistically, AdVTIPE2 obviously upregulated E-cadherin epithelial marker in AGS and HGC-27 tumor cells, whereas it downregulated N-cadherin and Vimentin mesenchymal markers, Snail1, Snail2/Slug and Zeb1 EMT-inducing transcription factors (EMT-TFs), and tripartite motif-containing 29 (TRIM29) and phosphatase regenerating liver 3 (PRL-3) gastric cancer-specific metastasis markers. Importantly, glycogen synthase kinase-3β (GSK-3β) inhibitor VIII and 26S proteasome inhibitor MG132 assays revealed that TIPE2 downregulated Snail1 and Snail2/Slug in a GSK-3β- and proteasome-dependent manner possibly by impairing AKT signaling. Our data provided the first evidence that TIPE2 inhibits gastric cancer cell migration, invasion and metastasis very probably via reversal of EMT, revealing that TIPE2 may be a novel therapeutic target for human gastric cancer EMT and metastasis.
Collapse
|