1
|
Makwana R, Patel R, O'Neill R, Marchi E, Lyon GJ. The Cardiovascular Manifestations and Management Recommendations for Ogden Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25321331. [PMID: 40236393 PMCID: PMC11996587 DOI: 10.1101/2025.02.11.25321331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The NatA complex is composed of the NAA10, NAA15, and HYPK subunits. It is primarily responsible for N-terminal acetylation, a critical post-translational modification in eukaryotes. Pathogenic variants within NAA10 cause Ogden Syndrome (OS), which is characterized by varying degrees of intellectual disability, hypotonia, developmental delay, and cardiac abnormalities. Although the cardiac manifestations of the disease have been described extensively in case reports, there has not been a study focusing on the cardiac manifestations and their recommended clinical cardiac management. In this study, we describe the cardiac manifestations of OS in a cohort of 85 probands. We found increased incidence of structural and electrophysiologic abnormalities, with particularly high prevalence of QT interval prolongation. Sub-analysis showed that male probands and those with variants within the NAA15-binding domain had more severe phenotypes than females or those with variants outside of the NAA15-binding domain. Our results suggest that an OS diagnosis should be accompanied by full cardiac workup with emphasis on echocardiogram for structural defects and EKG/Holter monitoring for electrophysiologic abnormalities. Additionally, we strongly recommend that the use of QT-prolonging drugs be followed up with routine electrophysiological monitoring or consultation with a pediatric cardiologist. We hope this study guides clinicians and caregivers treating patients with OS and moves the field toward a standardized diagnostic workup for patients with this condition.
Collapse
|
2
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2025; 292:453-467. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
3
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
Wesely J, Rusielewicz T, Chen YR, Hartley B, McKenzie D, Yim MK, Maguire C, Bia R, Franklin S, Makwana R, Marchi E, Nikte M, Patil S, Sapar M, Moroziewicz D, Bauer L, Lee JT, Monsma FJ, Paull D, Lyon GJ. A repository of Ogden syndrome patient derived iPSC lines and isogenic pairs by X-chromosome screening and genome-editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615067. [PMID: 39386428 PMCID: PMC11463393 DOI: 10.1101/2024.09.28.615067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes the enzyme NAA10, as the catalytic subunit for the N-terminal acetyltransferase A (NatA) complex, including the accessory protein, NAA15. The first human disease directly involving NAA10 was discovered in 2011, and it was named Ogden syndrome (OS), after the location of the first affected family residing in Ogden, Utah, USA. Since that time, other variants have been found in NAA10 and NAA15. Here we describe the generation of 31 iPSC lines, with 16 from females and 15 from males. This cohort includes CRISPR-mediated correction to the wild-type genotype in 4 male lines, along with editing one female line to generate homozygous wild-type or mutant clones. Following the monoclonalizaiton and screening for X-chromosome activation status in female lines, 3 additional pairs of female lines, in which either the wild type allele is on the active X chromosome (Xa) or the pathogenic variant allele is on Xa, have been generated. Subsets of this cohort have been successfully used to make cardiomyocytes and neural progenitor cells (NPCs). These cell lines are made available to the community via the NYSCF Repository.
Collapse
Affiliation(s)
- Josephine Wesely
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Tom Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Yu-Ren Chen
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Brigham Hartley
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dayna McKenzie
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Matthew K Yim
- Roseman University, South Jordan, Utah, United States of America
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Manali Nikte
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Soha Patil
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Lauren Bauer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick J Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Gholson J Lyon
- Roseman University, South Jordan, Utah, United States of America
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
5
|
Duong NX, Nguyen T, Le MK, Sawada N, Kira S, Kondo T, Inukai T, Mitsui T. NAA10 gene expression is associated with mesenchymal transition, dedifferentiation, and progression of clear cell renal cell carcinoma. Pathol Res Pract 2024; 255:155191. [PMID: 38340582 DOI: 10.1016/j.prp.2024.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION We aimed to investigate the expression and prognostic role of NAA10 in clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS We performed a gene expression and survival analysis based on the human cancer genome atlas database of ccRCC patients (TCGA-KIRC). RESULTS The patients in the TCGA-KIRC (n = 537) were divided into two subgroups: NAA10-low and NAA10-high expression groups. NAA10-high ccRCC exhibited higher T stages (p = 0.002), a higher frequency of distant metastasis (p = 0.018), more advanced AJCC stages (p < 0.001), a lower overall survival time (p = 0.036), and a lower survival rate (p < 0.001). NAA10-high ccRCC was associated with increased activity of non-specific oncogenic pathways, including oxidative phosphorylation (p < 0.001) and cell cycle progression [G2 to M phase transition (p = 0.045) and E2F targets (p < 0.001)]. Additionally, the NAA10-high tumors showed reduced apoptosis via TRIAL pathways (p < 0.001) and increased levels of activity that promoted epithelial-mesenchymal transition (p = 0.026) or undifferentiation (p = 0.01). In ccRCC, NAA10 expression was found to be a negative prognostic factor in both non-metastatic (p < 0.001) and metastatic tumors (p = 0.032). CONCLUSIONS In ccRCC, NAA10 expression was shown to be a negative prognostic factor related to tumor progression rather than tumor initiation, and high NAA10 expression promoted epithelial-mesenchymal transition and undifferentiation.
Collapse
Affiliation(s)
- Nguyen Xuong Duong
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan; Department of Urology, Cho Ray Hospital, Ho Chi Minh city, Vietnam.
| | - Thao Nguyen
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Minh-Khang Le
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Norifumi Sawada
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Satoru Kira
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| |
Collapse
|
6
|
Ho KH, Pan KF, Cheng TY, Chien MH, Hua KT. Multiple impacts of Naa10p on cancer progression: Molecular functions and clinical prospects. Biochim Biophys Acta Rev Cancer 2023; 1878:188973. [PMID: 37659460 DOI: 10.1016/j.bbcan.2023.188973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ke-Fan Pan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tsu-Yao Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
8
|
Naa10p promotes cell invasiveness of esophageal cancer by coordinating the c-Myc and PAI1 regulatory axis. Cell Death Dis 2022; 13:995. [PMID: 36433943 PMCID: PMC9700753 DOI: 10.1038/s41419-022-05441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.
Collapse
|
9
|
Wang F, Zheng J, Yang J, Luo T, Xu J, Yang Y, Gu Y, Zeng Y. N-α-Acetyltransferase 10 inhibits invasion and metastasis of oral squamous cell carcinoma via regulating Pirh2-p53 signalling pathway. J Cell Mol Med 2022; 26:2921-2934. [PMID: 35366056 PMCID: PMC9097830 DOI: 10.1111/jcmm.17306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
N‐α‐Acetyltransferase 10 (NAA10) was reported to be involved in tumour invasion and metastasis in several of tumours. However, the role and mechanism of NAA10‐mediated invasion and metastasis in oral squamous cell carcinoma (OSCC) remains undetermined. Herein, our study showed that NAA10 inhibits cell migration and invasion in vitro and attenuates the xenograft tumorigenesis in nude mice. Mechanistically, we demonstrated that there is a physical interaction between NAA10 and RelA/p65 in OSCC cells, thereby preventing RelA/p65‐mediated transcriptional activation of Pirh2. Consequently, inhibition of Pirh2 increased p53 level and suppressed the expression of p53 downstream targets, matrix metalloprotein‐2 (MMP‐2) and MMP‐9. Therefore, NAA10 may function as a tumour metastasis suppressor in the progression of OSCC by targeting Pirh2‐p53 axis and might be a prognostic marker as well as a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Fazhan Wang
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Zheng
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Jie Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Ting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Yongyong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Zeng
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Lv S, Luo T, Yang Y, Li Y, Yang J, Xu J, Zheng J, Zeng Y. Naa10p and IKKα interaction regulates EMT in oral squamous cell carcinoma via TGF-β1/Smad pathway. J Cell Mol Med 2021; 25:6760-6772. [PMID: 34060226 PMCID: PMC8278082 DOI: 10.1111/jcmm.16680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.
Collapse
Affiliation(s)
- Sai Lv
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Yongyong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuqing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Jie Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Sun L, Wang K, Peng L, Zhang J, Yang J, Zhao J, Xu J, Zheng J, Zeng Y. Naa10p Enhances Chemosensitivity to Cisplatin in Oral Squamous Cell Carcinoma Cells. Cancer Manag Res 2021; 13:1843-1851. [PMID: 33658848 PMCID: PMC7917391 DOI: 10.2147/cmar.s296783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the function and underlying molecular mechanism of N-α-acetyltransferase 10 protein (Naa10p) in cisplatin (CDDP) chemosensitivity in oral squamous cell carcinoma (OSCC). Methods Salivary Naa10p levels in 76 OSCC patients undergoing CDDP-based chemotherapy were detected using enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction and Western blot were used to examine the expression of Naa10p in constructed CDDP-resistant OSCC cell (Cal-27/CDDP) lines and nude mouse model. In addition, the tumor volume and weight of nude mice were analyzed. Lentiviral system was employed to establish and identify OSCC cell lines with stable Naa10p interference or overexpression. MTT assay was used for drug sensitivity analysis. P-gp and Bcl-2 expression levels were tested by Western blot. Results Higher salivary Naa10p expression was present in the complete response/partial response group (n=46) compared to the stable disease/progressive disease group (n=30) in OSCC patients receiving chemotherapy treatment. Naa10p expression was down-regulated in Cal-27/CDDP cells and tissues. Naa10p overexpression significantly reduced the expression level of drug-resistant molecules. Naa10p was related to CDDP resistance and enhanced CDDP sensitivity in OSCC according to drug sensitivity analysis and nude mouse model experiments. Conclusion Naa10p plays a tumor suppressor gene role and is associated with CDDP resistance in OSCC. It can enhance CDDP sensitivity in OSCC and may be a potential target for OSCC chemotherapy.
Collapse
Affiliation(s)
- Lichun Sun
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Kaixin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Lu Peng
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jinfang Zhang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jie Yang
- Department of Laboratory, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Juan Zhao
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jiang Xu
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jun Zheng
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Yan Zeng
- Department of Stomatology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
12
|
NAA10 as a New Prognostic Marker for Cancer Progression. Int J Mol Sci 2020; 21:ijms21218010. [PMID: 33126484 PMCID: PMC7663132 DOI: 10.3390/ijms21218010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is an acetyltransferase that acetylates both N-terminal amino acid and internal lysine residues of proteins. NAA10 is a crucial player to regulate cell proliferation, migration, differentiation, apoptosis, and autophagy. Recently, mounting evidence presented the overexpression of NAA10 in various types of cancer, including liver, bone, lung, breast, colon, and prostate cancers, and demonstrated a correlation of overexpressed NAA10 with vascular invasion and metastasis, thereby affecting overall survival rates of cancer patients and recurrence of diseases. This evidence all points NAA10 toward a promising biomarker for cancer prognosis. Here we summarize the current knowledge regarding the biological functions of NAA10 in cancer progression and provide the potential usage of NAA10 as a prognostic marker for cancer progression.
Collapse
|
13
|
Chaudhary P, Ha E, Vo TTL, Seo JH. Diverse roles of arrest defective 1 in cancer development. Arch Pharm Res 2019; 42:1040-1051. [DOI: 10.1007/s12272-019-01195-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
|
14
|
Wang H, He H, Yang C. miR-342 suppresses the proliferation and invasion of acute myeloid leukemia by targeting Naa10p. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3671-3676. [PMID: 31496296 DOI: 10.1080/21691401.2019.1596930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Haiyan Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Digestive Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Chunyan Yang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
15
|
Zheng J, Wang F, Yang Y, Xu J, Yang J, Wang K, Liu Y, Du G, Zeng Y. Inverse correlation between Naa10p and Pirh2 expression and the combined prognostic value in oral squamous cell carcinoma patients. J Oral Pathol Med 2019; 48:686-695. [PMID: 31134698 DOI: 10.1111/jop.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study aims to explore the associations between N-α-acetyltransferase 10 protein (Naa10p) and p53-induced protein with a RING-H2 domain (Pirh2) expression and clinicopathological characteristics in oral squamous cell carcinoma (OSCC). METHODS Immunohistochemistry was performed to detect Naa10p and Pirh2 levels containing 118 OSCC specimens, and additional analyses were used to determine correlations between Naa10p and Pirh2 expressions, generate survival curves, and perform univariate and multivariate statistical analyses. Further, quantitative real-time PCR (qRT-PCR) and western blot were employed to examine Naa10p and Pirh2 expression level in OSCC patients' samples. We further validated the result using RNAseq data from The Cancer Genome Atlas (TCGA) and mRNA array data from GSE31056 and GSE30784. RESULTS Naa10p and Pirh2 are overexpression, and the protein level of Naa10p was negatively correlated with that of Pirh2 in OSCC tissues. Multivariate Cox proportional hazard regression analysis showed that positive Naa10p expression and negative Pirh2 expression were both independent good prognostic factors for OSCC patients. Furthermore, the Naa10p-positive/Pirh2-negative group has the best prognosis among all OSCC patients. Results from qRT-PCR showed the higher expression level of Naa10 and lower expression level of Pirh2 in tumor tissues than adjacent normal tissues. TCGA database and data from GSE31056 and GSE30784 showed the similar result. The correlation analysis showed that the mRNA level of Naa10 was negatively correlated that of Pirh2. CONCLUSION The expression of Naa10p is negatively correlated with that of Pirh2, and positive Naa10p and negative Pirh2 might be independent biomarkers for better OSCC prognoses.
Collapse
Affiliation(s)
- Jun Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Fazhan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, China
| | - Yongyong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiang Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jinhua Yang
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, China
| | - Keying Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yuhao Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China
| | - Gang Du
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, China.,Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Aksnes H, Ree R, Arnesen T. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases. Mol Cell 2019; 73:1097-1114. [PMID: 30878283 DOI: 10.1016/j.molcel.2019.02.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co-translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific; for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie-restriction-induced longevity and pathological α-synuclein aggregation in Parkinson's disease. Combined, the NATs rise as multifunctional proteins, and N-terminal acetylation is gaining recognition as a major cellular regulator.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Rasmus Ree
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
17
|
Zheng J, Sun L, Yuan W, Xu J, Yu X, Wang F, Sun L, Zeng Y. Clinical value of Naa10p and
CEA
levels in saliva and serum for diagnosis of oral squamous cell carcinoma. J Oral Pathol Med 2018; 47:830-835. [PMID: 30028540 DOI: 10.1111/jop.12767] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Stomatology The First Affiliated Hospital School of Medicine Shihezi University Shihezi Xinjiang China
| | - Lichun Sun
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Stomatology The First Affiliated Hospital School of Medicine Shihezi University Shihezi Xinjiang China
| | - Wumei Yuan
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Biochemistry School of Medicine Shihezi University Shihezi Xinjiang China
| | - Jiang Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Stomatology The First Affiliated Hospital School of Medicine Shihezi University Shihezi Xinjiang China
| | - Xinle Yu
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Stomatology The First Affiliated Hospital School of Medicine Shihezi University Shihezi Xinjiang China
| | - Fazhan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Biochemistry School of Medicine Shihezi University Shihezi Xinjiang China
| | - Lisha Sun
- Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease School of Medicine Shihezi University Shihezi Xinjiang China
- Department of Biochemistry School of Medicine Shihezi University Shihezi Xinjiang China
| |
Collapse
|