1
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2023; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
2
|
Hu Q, Xu L, Yi Q, Yuan J, Wu G, Wang Y. miR-204 suppresses uveal melanoma cell migration and invasion through negative regulation of RAB22A. Funct Integr Genomics 2023; 23:49. [PMID: 36705739 DOI: 10.1007/s10142-022-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Uveal melanoma (UM), a frequently seen adulthood primary ocular malignancy, shows high aggressiveness. Accumulating studies have revealed the crucial effects of microRNAs (miRNAs) on tumorigenesis and development in various human tumors. miR-204, the cancer-associated miRNA, shows dysregulation and is related to several human malignancies, but its effect on UM remains unknown. The present work focused on exploring miR-204's effect on UM and elucidating its possible molecular mechanisms. According to our results, miR-204 expression markedly increased within both UM tissues and cell lines. As revealed by functional analysis, miR-204 suppressed UM cell invasion and migration. Besides, RAB22A expression decreased through directly binding miR-204 into the corresponding 3' untranslated region (3'UTR) in UM cells. Furthermore, the RAB22A mRNA level increased, which was negatively related to the miR-204 level within UM samples. As revealed by mechanical research, miR-204 exerted its inhibition on the invasion and migration of UM cells via RAB22A. Taken together, this study suggested the tumor-suppressing effect of miR-204 on UM through down-regulating RAB22A. Thus, miR-204 may serve as the new anti-UM therapeutic target.
Collapse
Affiliation(s)
- Qidi Hu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Lingli Xu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Quanyong Yi
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Jianshu Yuan
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Guohai Wu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Yuwen Wang
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China.
| |
Collapse
|
3
|
Taghehchian N, Alemohammad R, Farshchian M, Asoodeh A, Abbaszadegan MR. Inhibitory role of LINC00332 in gastric cancer progression through regulating cell EMT and stemness. Life Sci 2022; 305:120759. [PMID: 35787995 DOI: 10.1016/j.lfs.2022.120759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most common lethal malignancies worldwide. The molecular mechanisms underlying GC early detection are poorly understood. Identifying potential coding and non-coding markers and related pathways in the GC progression is essential. Some Long non-coding RNAs (lncRNAs) reportedly play vital roles during gastric GC development. However, the clinical significance and biological function of LINC00332 in GC remain largely unclear. METHODS The gene expression patterns of GC from an RNAseq dataset (GSE122401) were retrieved from the Gene Expression Omnibus (GEO) database to recognize differentially expressed genes (DEGs) and lncRNAs (DELs) between normal and GC samples through several bioinformatic analysis. The expression of LINC00332 and MMP-13 as a target gene was quantified in fresh frozen tissues obtained from GC patients. In addition, we investigated the potential function of LINC00332 in silico and in vitro. RESULTS The expressions of LINC00332 and MMP-13 were significantly downregulated and upregulated in GC tissues, respectively. A significant inverse correlation between LINC00332 and MMP-13 mRNA expression was observed in tumor samples. The mRNA expression level of mesenchymal markers, stem cell factors, and MMP genes were significantly decreased after the LINC00332 ectopic expression, while epithelial markers expression was significantly increased. The LINC00332 overexpression markedly repressed proliferation, migration, and invasion and did not induce apoptosis in AGS cells. In addition, LINC00332 overexpression notably promoted the E-cadherin protein expression. Moreover, LINC00332 significantly decreased the cisplatin resistance. CONCLUSION Our findings indicated that LINC00332 may be a critical anti-EMT factor and provided a new efficient therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Alemohammad
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Khorasan Razavi, Mashhad, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
4
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
5
|
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T, Oyenike MA. Understanding the Complex Milieu of Epithelial-Mesenchymal Transition in Cancer Metastasis: New Insight Into the Roles of Transcription Factors. Front Oncol 2021; 11:762817. [PMID: 34868979 PMCID: PMC8636732 DOI: 10.3389/fonc.2021.762817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program during which polarised, immobile epithelial cells lose connection with their neighbours and are converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a series of genetic and cellular events leading to the repression of epithelial-associated markers and upregulation of mesenchymal-associated markers. EMT is very crucial for many biological processes such as embryogenesis and ontogenesis during human development, and again it plays a significant role in wound healing during a programmed replacement of the damaged tissues. However, this process is often hijacked in pathological conditions such as tumour metastasis, which constitutes the most significant drawback in the fight against cancer, accounting for about 90% of cancer-associated mortality globally. Worse still, metastatic tumours are not only challenging to treat with the available conventional radiotherapy and surgical interventions but also resistant to several cytotoxic agents during treatment, owing to their anatomically diffuse localisation in the body system. As the quest to find an effective method of addressing metastasis in cancer intervention heightens, understanding the molecular interplay involving the signalling pathways, downstream effectors, and their interactions with the EMT would be an important requisite while the challenges of metastasis continue to punctuate. Unfortunately, the molecular underpinnings that govern this process remain to be completely illuminated. However, it is becoming increasingly clear that EMT, which initiates every episode of metastasis, significantly requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this review critically examines the roles of TFs as drivers of molecular rewiring that lead to tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses the interaction of various signalling molecules and effector proteins with these factors. It also provides insight into promising therapeutic targets that may inhibit the metastatic process to overcome the limitation of "undruggable" cancer targets in therapeutic design and upturn the current spate of drug resistance. More so, it extends the discussion from the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps up on how this knowledge update shapes the diagnostic and clinical approaches that may demand a potential shift in investigative paradigm using novel technologies such as single-cell analyses to improve overall patient survival.
Collapse
Affiliation(s)
- Sikiru O. Imodoye
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kamoru A. Adedokun
- Department of Oral Pathology, Dental University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdurrasheed Ola Muhammed
- Department of Histopathology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Musa A. Muhibi
- Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo State University, Uzairue, Nigeria
| | - Taofeeq Oduola
- Department of Chemical Pathology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
6
|
Tokumaru Y, Oshi M, Huyser MR, Yan L, Fukada M, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. Low expression of miR-29a is associated with aggressive biology and worse survival in gastric cancer. Sci Rep 2021; 11:14134. [PMID: 34239017 PMCID: PMC8266839 DOI: 10.1038/s41598-021-93681-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced gastric cancer (GC) is one of the most lethal cancer types, thus a better understanding of its biology in patients is urgently needed. MicroRNA (miR)-29a is a known tumor suppressive miR that is related to metastasis, but its clinical relevance in GC remains ambiguous. Here, using a large GC patient cohort we hypothesized that low expression of miR-29a in GC is associated with aggressive cancer biology and worse survival. We demonstrated that low miR-29a GC enriched cell proliferation, apoptosis, metastasis, and angiogenesis related gene sets, as well as the higher expression of related genes. Low miR-29a GC was associated with less anti-cancer immune cell infiltration as well as immune related scoring. Low miR-29a GC demonstrated a worse overall survival (OS) as well as disease specific survival (DSS) compared with high expressing miR-29a GC. Notably, low miR-29a expression was the only factor, other than residual tumor status, to be an independent prognostic biomarker of worse OS and DSS. In conclusion, low miR-29a GC was associated with aggressive cancer biology and worse OS as well as DSS. Additionally, low expression of miR-29a was an independent prognostic biomarker of OS and DSS in gastric cancer patients.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Michelle R Huyser
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Masahiro Fukada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA. .,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, 14263, USA. .,Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
7
|
Zhao YJ, Zhang J, Wang YC, Wang L, He XY. MiR-450a-5p Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion and Promotes Apoptosis via Targeting CREB1 and Inhibiting AKT/GSK-3β Signaling Pathway. Front Oncol 2021; 11:633366. [PMID: 33854971 PMCID: PMC8039465 DOI: 10.3389/fonc.2021.633366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer seriously affects human health and research on gastric cancer is attracting more and more attentions. In recent years, molecular targets have become the research focus. Accumulating evidence indicates that miR-450a-5p plays a critical role in cancer progression. However, the biological role of miR-450a-5p in gastric carcinogenesis remains largely unknown. In this study, we explore the effects and mechanisms of miR-450a-5p on the development and progression of gastric cancer. We used gain-of-function approaches to investigate the role of miR-450a-5p on gastric cancer cell proliferation, migration, invasion, and apoptosis using biological and molecular techniques including real-time quantitative PCR (RT-qPCR), CCK-8, colony formation, flow cytometry, Western blot, wound healing, transwell chamber, dual luciferase reporter, and tumor xenograft mouse model. We found that gastric cancer cells have low expression of miR-450a-5p and overexpression of miR-450a-5p inhibited gastric cancer cell proliferation, migration and invasion, and induced apoptosis in vitro. Moreover, we demonstrated that ectopic expression of miR-450a-5p inhibited gastric cancer growth in vivo. At the molecular level, overexpression of miR-450a-5p significantly increased the expression of pro-apoptotic proteins, including caspase-3, caspase-9, and Bax, and inhibited the expression of anti-apoptotic protein Bcl-2. Luciferase reporter experiment suggested that camp response element binding protein 1 (CREB1) had a negative correlation with miR-450a-5p expression, and knockdown of CREB1 alleviated gastric cancer growth. Furthermore, we also found that miR-450a-5p inhibited the activation of AKT/GSK-3β signaling pathway to inhibit the progression of gastric cancer. Collectively, miR-450a-5p repressed gastric cancer cell proliferation, migration and invasion and induced apoptosis through targeting CREB1 by inhibiting AKT/GSK-3β signaling pathway. MiR-450a-5p could be a novel molecular target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ya-Jun Zhao
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Zhang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong-Cang Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- Center for Diagnostic Pathology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M, Ghafouri-Fard S. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Front Mol Biosci 2021; 8:665199. [PMID: 33842553 PMCID: PMC8033041 DOI: 10.3389/fmolb.2021.665199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang B, Cui H, Sun Y, Wang X, Jia Q, Li J, Yin Y, Sun X, Xu H, Li H, Xu F, Rong J. Up-regulation of miR-204 inhibits proliferation, invasion and apoptosis of gallbladder cancer cells by targeting Notch2. Aging (Albany NY) 2021; 13:2941-2958. [PMID: 33460397 PMCID: PMC7880336 DOI: 10.18632/aging.202444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Gallbladder carcinoma (GC) is an extremely malignant gastrointestinal tumor, but relevant mechanisms are still under investigation. MicroRNA (miR) is differentially expressed in a variety of tumors. Here we explored miR-204 in patients with GC and related mechanisms. A GSE104165 chip was downloaded from the gene expression omnibus (GEO) for analysis. The qRT-PCR assay was used for quantifying miR-204 and Notch2 in the serum and tissues of the patients, and the patients were followed up for 3 years to analyze independent factors of prognosis. The CCK8, transwell, and flow cytometry assays were applied for analyzing proliferation, invasion, as well as apoptosis of cells, and the dual luciferase reporter (DLR) assay was adopted for determining the association of miR-204 with Notch2. MiR-204 was low in patients with GC, and it might serve as a diagnostic indicator for GC. In addition, patients with low e MiR-204 usually faced high rates of III+IV stage, distant metastasis, and low differentiation, and also showed a poor prognosis. DLR assay verified the targeted binding of miR-204 to Notch2 mRNA.
Collapse
Affiliation(s)
- Baohua Zhang
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Haiyan Cui
- Department of Pathology, Zibo Fourth People’s Hospital, Zibo 255067, Shandong Province, China
| | - Yinping Sun
- The Third Ward of Oncology Department, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Xinmei Wang
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Qing Jia
- The First Ward of Gastroenterology Department, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Jing Li
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Yingchun Yin
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Xiaoyu Sun
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Huirong Xu
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Hongwei Li
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Famei Xu
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| | - Jiansheng Rong
- Department of Pathology, Zibo Central Hospital, Zibo 255000, Shandong Province, China
| |
Collapse
|
10
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
11
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
12
|
Geng W, Li C, Zhan Y, Zhang R, Zheng J. Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol 2020; 236:3629-3640. [PMID: 33090549 DOI: 10.1002/jcp.30097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Thymoquinone (TQ), the main active constituent of Nigella sativa seeds, has been shown to play a role in antioxidation, anti-inflammation, and antitumor. Recent studies have demonstrated that TQ contributes to the suppression of liver fibrosis. Abnormal activated epithelial-mesenchymal transition (EMT) promotes the activation of hepatic stellate cells (HSCs). However, whether the antifibrotic effects of TQ occur through inhibiting EMT is largely unknown. In this study, it was found that TQ ameliorated liver fibrosis and collagen accumulation in carbon tetrachloride (CCl4) mice. In vitro, TQ inhibited HSC activation including reduced proliferation, α-smooth muscle actin, and collagen. In addition, TQ markedly suppressed the EMT process, with enhanced E-cadherin and reduced desmin. Notably, snail family transcriptional repressor 1 (Snai1), the EMT master transcription factor, was obviously inhibited by TQ in vivo and in vitro. Further studies demonstrated that Snai1 was a target of microRNA-30a (miR-30a), which was upregulated by TQ. Interestingly, the effects of TQ on HSC activation and EMT were almost inhibited by miR-30a inhibitor. Collectively, we demonstrate that TQ inhibits HSC activation, at least in part, via regulation of miR-30a and Snai1. TQ upregulates miR-30a expression, resulting in a reduced Snai1 level as well as EMT process inactivation, which contributes to the inhibition of HSC activation. TQ may be a potential therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
14
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
15
|
Zhang C, Miyagishima KJ, Dong L, Rising A, Nimmagadda M, Liang G, Sharma R, Dejene R, Wang Y, Abu-Asab M, Qian H, Li Y, Kopera M, Maminishkis A, Martinez J, Miller S. Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Hum Mol Genet 2020; 28:3355-3368. [PMID: 31332443 DOI: 10.1093/hmg/ddz171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.
Collapse
Affiliation(s)
- Congxiao Zhang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Kiyoharu J Miyagishima
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Rising
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malika Nimmagadda
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genqing Liang
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roba Dejene
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Wang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Megan Kopera
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Jennifer Martinez
- Inflammation and Autoimmunity, National Institute of Environmental Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Sheldon Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
16
|
DLX6-AS1/miR-204-5p/OCT1 positive feedback loop promotes tumor progression and epithelial-mesenchymal transition in gastric cancer. Gastric Cancer 2020; 23:212-227. [PMID: 31463827 DOI: 10.1007/s10120-019-01002-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidence indicates that long non-coding RNAs (lncRNAs) participate in progression of gastric cancer (GC). Nevertheless, the function and expression level of DLX6-AS1 in GC remain unknown. METHODS We explored the sequencing data of DLX6-AS1 downloaded from The Cancer Genome Atlas. The expression of DLX6-AS1, miR-204-5p and OCT1 in 56 GC patients and GC cell lines was quantified by qRT-PCR and western blotting. Furthermore, we performed in vitro functional assays to assess proliferation, invasion and migration of GC cells by knockdown of DLX6-AS1. The expression level of epithelial-mesenchymal transition (EMT)-related genes was also determined by qRT-PCR and western blotting. Actin remodeling was detected by F-actin phalloidin staining. The luciferase reporter assay and chromatin immunoprecipitation assay was utilized to confirm the bioinformatic prediction. The function of the DLX6-AS1/miR-204-5p/OCT1 axis in GC proliferation was clarified by rescue assays. RESULTS We first demonstrated that DLX6-AS1 was upregulated in GC tissues and cell lines and was associated with T3/T4 invasion, distant metastasis and poor clinical prognosis. Further functional analysis showed that downregulation of DLX6-AS1 inhibited GC cell proliferation, migration, invasion and EMT in vitro. Mechanistic investigation indicated that DLX6-AS1 acted as a cancer-promoting competing endogenous RNA (ceRNA) by binding miR-204-5p and upregulating OCT1. Moreover, the transcription factor OCT1 was confirmed to enhance DLX6-AS1 expression by targeting the promoter region. CONCLUSIONS This study revealed that OCT1-induced DLX6-AS1 promoted GC progression and the EMT via the miR-204-5p/OCT1 axis, suggesting that this lncRNA might be a promising prognostic biomarker and therapeutic target for GC.
Collapse
|
17
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
18
|
Wang X, Bi X, Huang X, Wang B, Guo Q, Wu Z. Systematic investigation of biomarker-like role of ARHGDIB in breast cancer. Cancer Biomark 2020; 28:101-110. [PMID: 32176626 DOI: 10.3233/cbm-190562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND ARHGDIB, a Rho GDP dissociation inhibitor protein, has been reported playing critical roles in regulation of multiple biological responses. However, whether ARHGDIB serves as a valuable biomarker in cancer is little known so far, especially in breast cancer. OBJECTIVE In this study, we aimed to investigate the importance of ARHGDIB in breast cancer, including but not limited to biomarker-like role, as well as potential mechanisms. METHODS Total 100 breast cancer samples and 100 benign breast disease samples were enrolled and underwent detailed pathological assessment and IHC analysis. Human breast cancer cell lines and epithelial cell line were subjected to siRNA-mediated knock-down, RT-qPCR, western blot, MTT staining, cell cycle assay, transwell analysis respectively. RESULTS We observed the expression of ARHGDIB is significantly higher in human breast cancer tissues compared with the benign tissues. ARHGDIB expression was positively correlated with tumor size, lymph node metastasis and TNM stage in breast cancer patients. Moreover, ARHGDIB depletion decreased proliferation, migration and invasion of breast cancer cells. Furthermore, we found ARHGDIB mediated epithelial-mesenchymal transition, and MMP2 is the key downstream effector of ARHGDIB. CONCLUSIONS Hence, our results suggested the significance and predictive role of ARHGDIB in breast cancer. High expression of ARHGDIB indicated the poor prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Bi
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bijun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
19
|
Shao G, Zhao Z, Zhao W, Hu G, Zhang L, Li W, Xing C, Zhang X. Long non-coding RNA MALAT1 activates autophagy and promotes cell proliferation by downregulating microRNA-204 expression in gastric cancer. Oncol Lett 2020; 19:805-812. [PMID: 31897197 PMCID: PMC6924198 DOI: 10.3892/ol.2019.11184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major diseases that threaten human health. Although the development of novel drugs has significantly improved the efficacy of GC chemotherapy, the 5-year survival rate of patients with GC remains unsatisfactory. In the present study, the role and mechanism of the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in GC proliferation was investigated. Clinical specimens and cancer cells were analyzed by western blotting or immunofluorescence. Reverse transcription-quantitative polymerase chain reaction analysis of 57 paired GC and non-tumorous tissues revealed elevated expression of MALAT1 in GC tissues compared with controls. In addition, increased MALAT1 was associated with elevated levels of microtubule-associated protein 1 light chain 3β (LC3B) and antigen Ki67, which are autophagy and proliferation markers, respectively. MTT and colony formation assay results demonstrated that MALAT1 promoted GC cell proliferation. To the best of our knowledge, the present study was the first to demonstrate that upregulated MALAT1 was associated with increased autophagy activation in GC tissues. Furthermore, this study reported that MALAT1 increased cell proliferation and enhanced autophagy activation in GC cells. In addition, the results revealed that MALAT1 inhibited microRNA (miR)-204 expression in GC cells. The present study also demonstrated that miR-204 repressed autophagy through the downregulation of LC3B and transient receptor potential melastatin 3 expression in GC cells. These results indicated that MALAT1 activated autophagy and promoted cell proliferation by downregulating miR-204 expression in GC.
Collapse
Affiliation(s)
- Guoyi Shao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Gen Hu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Liying Zhang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Wei Li
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xian Zhang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
20
|
Shen X, Jiang H, Chen Z, Lu B, Zhu Y, Mao J, Chai K, Chen W. MicroRNA-145 Inhibits Cell Migration and Invasion in Colorectal Cancer by Targeting TWIST. Onco Targets Ther 2019; 12:10799-10809. [PMID: 31849487 PMCID: PMC6911328 DOI: 10.2147/ott.s216147] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION MicroRNAs function as oncogenes or tumor suppressors in the development of various human cancers. We investigated the effect of microRNA-145 (miR-145) on colorectal cancer (CRC) cell invasion and migration. METHODS The levels of miR-145 in CRC cells were examined by quantitative PCR; Western blotting was used to detect TWIST1 (twist family bHLH transcription factor 1) protein and the epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, vimentin). Then, we transfected miR-145 mimics or inhibitor into CRC cells and used the wound healing and Transwell invasion assays to investigate their migration and invasive capability, respectively. RESULTS The miR-145 mimics suppressed CRC cell invasion and migration significantly; in contrast, miR-145 downregulation had the opposite effect. Furthermore, miR-145 regulated TWIST1 levels negatively at transcriptional level. TWIST1 knockdown significantly inhibited the CRC cell migration ability and the number of CRC cells that crossed the Transwell membrane. There was no significant difference in terms of migration and invasive capability after the cells had been transfected with miR-145 mimics or inhibitor plus TWIST1 small interfering RNA (siRNA) as compared to the TWIST1 siRNA-only group. Furthermore, we demonstrate that the inhibition of miR-145 could enhance the capability for lung metastasis in vivo. CONCLUSION Taken together, these findings indicate that miR-145 acts as a new tumor suppressor by regulating TWIST1 and plays a vital role in the invasive and migration ability of CRC cells.
Collapse
Affiliation(s)
- Xuning Shen
- Department of Gastroenterological Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Honggang Jiang
- Department of Gastroenterological Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Zhiheng Chen
- Department of Gastroenterological Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Bohao Lu
- Department of Gastroenterological Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Yi Zhu
- Department of Gastroenterological Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Kequn Chai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang310012, People’s Republic of China
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang310012, People’s Republic of China
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang310012, People’s Republic of China
| |
Collapse
|
21
|
Xu D, Li J, Li RY, Lan T, Xiao C, Gong P. PD-L1 Expression Is Regulated By NF-κB During EMT Signaling In Gastric Carcinoma. Onco Targets Ther 2019; 12:10099-10105. [PMID: 31819504 PMCID: PMC6883928 DOI: 10.2147/ott.s224053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to investigate the influence of epithelial-mesenchymal transition (EMT) occurring in gastric carcinoma cells and the involvement of programmed death ligand 1 (PD-L1) expression in tumor cells that undergo EMT. The mechanisms underlying PD-L1 expression during EMT in gastric carcinoma cells were also explored. Methods The capacities of migration and invasion were tested by cell scratch-wound assay and transwell chamber assay. PD-L1 expression by SGC7901 cell line and related mechanism were measured by Western blot and QRT-PCR. Results Treating with TGF-β1 promotes the motility of SGC7901 and PD-L1 expression in vitro, while activating the NF-κB signal pathway. Conclusion EMT increases the capacities of migration and invasion in gastric cancer cells, which resulted in up-regulation of PD-L1 expression via a mechanism that is dependent on NF-κB activation.
Collapse
Affiliation(s)
- Dan Xu
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Rui-Yang Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Ting Lan
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Chi Xiao
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| | - Ping Gong
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
22
|
Li Y, Chen R, Li Z, Cheng H, Li X, Li T, Zhu C. miR-204 Negatively Regulates Cell Growth And Metastasis By Targeting ROBO4 In Human Bladder Cancer. Onco Targets Ther 2019; 12:8515-8524. [PMID: 31802889 PMCID: PMC6801631 DOI: 10.2147/ott.s205023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
Background MicroRNAs (miRNAs) are well characterized for their important roles in human cancers by influencing various aspects of malignancy. Till now, the function and mechanism of miR-204, a tumor suppressor in several cancers, remain unclear in bladder cancer (BC). Here, we intend to explore its roles in BC progression. Methods qRT-PCR was applied to determine miR-204 and ROBO4 expression in BC tissues and cell lines. miR-204 expression with clinicopathological features was analyzed. The impacts of miR-204 on BC cell growth and metastasis in vitro were evaluated by both loss-of-function and gain-of-function assays (CCK-8, crystal violet staining, wound healing and transwell assays). Furthermore, qRT-PCR, Western blot and luciferase reporter assays were used to validate the targeting of ROBO4 by miR-204. Finally, linear regression was performed to analyze the correlation of miR-204 and ROBO4 in BC tissues. Results Expression of miR-204 was markedly decreased in BC tissues and cell lines were compared with respective controls. Low miR-204 expression was associated with positive advanced T stage and lymph node metastasis. Cellular function studies revealed that miR-204 inhibited BC cell growth, migration and invasion. Mechanistic exploration found that miR-204 directly targeted ROBO4. Rescue assays indicated that ROBO4 restoration could reverse the antitumor effects of miR-204 in BC. Finally, ROBO4 was significantly correlated with miR-204 levels inversely. Conclusion miR-204 might serve as a tumor suppressor in BC by targeting ROBO4.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| | - Rong Chen
- Department of Urology, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, China
| | - Zun Li
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| | - Hepeng Cheng
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| | - Xiaodong Li
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| | - Tieqiang Li
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| | - Chaoyang Zhu
- Department of Urology, Henan University Huaihe Hospital, Kaifeng 475000, People's Republic of China
| |
Collapse
|
23
|
Yuan H, Zhang J, Li F, Li W, Wang H. Sinomenine exerts antitumour effect in gastric cancer cells via enhancement of miR-204 expression. Basic Clin Pharmacol Toxicol 2019; 125:450-459. [PMID: 31243880 DOI: 10.1111/bcpt.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Gastric carcinoma (GC) is a pernicious neoplasm with high morbidity and mortality. Sinomenine (SIN) has long been exploited to heal rheumatoid arthritis. Recently, SIN has been discovered to exert the antitumour functions in diverse cancers. However, the impacts of SIN on GC remain indistinct. We attempted to expose the antitumour effect of SIN on GC. MKN45 and SGC-7901 cells were administered with SIN for 24 hours, cell viability, proliferation, apoptosis, migration, invasion and the associated proteins in the above processes were examined via exploiting CCK-8, BrdU, flow cytometry, Transwell and Western blot. MiR-204 expression in GC tumour tissues, different GC cell lines and SIN-stimulated GC cells was investigated by executing RT-qPCR. The above cell biological processes were reassessed after transfection with miR-204 inhibitor. The latent mechanisms were probed by examining AMPK and Wnt/β-catenin pathways. We found that SIN memorably repressed cell proliferation, evoked apoptosis and affected CyclinD1, Bcl-2, Bax and cleaved-caspase-3 expression in MKN45 and SGC-7901 cells. Cell migration, invasion and expression of MMP-9 and Vimentin were all restrained by SIN stimulation. The increase of miR-204 was discovered in GC tissues and SIN-treated MKN45 and SGC-7901 cells. But suppression of miR-204 was observed in AGS, MKN28, MKN45 and SGC-7901 cells. Suppression of miR-204 overturned the inhibitory functions of SIN in MKN45 and SGC-7901 cells. Besides, SIN prohibited AMPK and Wnt/β-catenin pathways via enhancement of miR-204. In conclusion, these findings suggested that SIN exerted the antitumour activity in GC cells by hindering AMPK and Wnt/β-catenin pathways via enhancement of miR-204.
Collapse
Affiliation(s)
- Haifeng Yuan
- Department of Gastroenterology, Heze Municipal Hospital, Heze, China
| | - Jinghua Zhang
- Department of Histology and Embryology, Heze Medical College, Heze, China
| | - Fuli Li
- Department of Clinical Pharmacy, Heze Municipal Hospital, Heze, China
| | - Wei Li
- Department of Gastroenterology, Heze Municipal Hospital, Heze, China
| | - Haichao Wang
- Department of Oncology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
24
|
Feng W, Ding Y, Zong W, Ju S. Non-coding RNAs in regulating gastric cancer metastasis. Clin Chim Acta 2019; 496:125-133. [PMID: 31276633 DOI: 10.1016/j.cca.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide, and mortality remains high, especially in East Asia. At present, the main method to diagnose gastric cancer is pathological biopsy. At the time of diagnosis, most patients have been diagnosed with advanced cancer and metastasis. The treatment of gastric cancer patients is mainly radical surgical resection and chemoradiotherapy, while patients with metastatic tumor have great challenges to radical surgery and are prone to drug resistance. Metastasis is an important factor affecting tumor development. In addition, evidence accumulated in the literature indicates that non-coding RNA plays a key role in tumor metastasis. This article reviews the role of ncRNAs in gastric cancer metastasis and discusses the regulatory mechanism in the development and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
25
|
Ma MH, An JX, Zhang C, Liu J, Liang Y, Zhang CD, Zhang Z, Dai DQ. ZEB1-AS1 initiates a miRNA-mediated ceRNA network to facilitate gastric cancer progression. Cancer Cell Int 2019; 19:27. [PMID: 30774556 PMCID: PMC6364449 DOI: 10.1186/s12935-019-0742-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022] Open
Abstract
Background Currently, cancer-related competing endogenous RNA (ceRNA) networks are attracting significant interest. As long noncoding RNA ZEB1-AS1 has been reported to function as an oncogene due to sponging microRNAs (miRNAs) in several cancers, we hypothesized that it could interact with specific miRNAs to form regulatory networks and facilitate the growth of gastric cancer (GC). Methods MiRNAs interacting with ZEB1-AS1 were screened for and selected by bioinformatics analysis. Overexpression or repression of ZEB1-AS1 was performed to determine whether it could regulate selected miRNAs. Quantitative real-time polymerase chain reactions (qPCR) validated the expression profiles of ZEB1-AS1 and miR-149-3p in GC cell lines and tissue. Statistical analysis determined the clinical significance of ZEB1-AS1 in relation to miR-149-3p. Cell counting, wound healing and transwell assays were performed to assess cell proliferation, migration and invasion. A luciferase reporter assay was utilized to confirm the putative miR-149-3p-binding sites in ZEB1-AS1. Results Briefly, bioinformatics analysis inferred that ZEB1-AS1 interacts with miR-204, miR-610, and miR-149. Gain- or loss-of function assays suggested that ZEB1-AS1 negatively regulates miR-149-3p, miR-204-5p and miR-610 in GC cells. Validated by qPCR, ZEB1-AS1 was up-regulated and miR-149-3p down-regulated in GC cells and tissue. Data analyses indicated that ZEB1-AS1 and miR-149-3p are associated with the independent diagnosis and prognosis of GC. Functional assays support the theory that miR-149-3p hinders GC proliferation, migration and invasion, whereas its overexpression abrogates the corresponding effects induced by ZEB1-AS1. Lastly, dissection of the molecular mechanisms involved indicated that ZEB1-AS1 can regulate GC partly via a ZEB1-AS1/miR-149-3p axis. Conclusions ZEB1-AS1 can interact with specific miRNAs, forming a miRNA-mediated ceRNA network and promoting GC progress, partly through a ZEB1-AS1/miR-149-3p axis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Hui Ma
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Jia-Xiang An
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Cheng Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Jie Liu
- 2Science Experiment Center, China Medical University, Shenyang, 110122 China
| | - Yu Liang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Chun-Dong Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Zhen Zhang
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Dong-Qiu Dai
- 1Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| |
Collapse
|
26
|
Wang P, Guo X, Zong W, Li Y, Liu G, Lv Y, Zhu Y, He S. PGC-1α/SNAI1 axis regulates tumor growth and metastasis by targeting miR-128b in gastric cancer. J Cell Physiol 2019; 234:17232-17241. [PMID: 30684287 DOI: 10.1002/jcp.28193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that has been characterized as master regulators of mitochondrial biogenesis. It has been reported that aberrant regulation of PGC-1α is involved in a variety of human cancers. However, whether PGC-1α is involved in the regulation of tumor growth and metastasis in gastric cancer (GC) remains unknown. In the present study, we found that the expression of PGC-1α was upregulated in GC tissues and GC cell lines. Inhibition of PGC-1α inhibited cell viability, migration, and invasion, and promoted cell apoptosis of GC cells. Furthermore, inhibition of PGC-1α downregulated the SNAI1 expression, whereas upregulated microRNA (miR)-128b expression. The expression of SNAI1 was upregulated and the expression of miR-128b was downregulated in GC tissues. We further found that there was a positive correlation between PGC-1α and SNAI1 expression, and a negative correlation between PGC-1α and miR-128b expression or between SNAI1 and miR-128b expression in GC tissues. Moreover, PGC-1α inhibition-induced increased miR-128b expression, and PGC-1α overexpression-induced decreased miR-128b expression were both markedly suppressed by SNAI1 overexpression. In addition, SNAI1 overexpression or miR-128b inhibition partly reversed the effects of PGC-1α inhibition in GC cells. Furthermore, inhibition of PGC-1α suppressed the tumor growth in a nude mouse model, which may be related with the dysregulation of SNAI1 and miR-128b. In conclusion, these data indicate that the PGC-1α/SNAI1/miR-128b axis plays a vital role in GC via regulating cell viability, migration, invasion, and apoptosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xueyan Guo
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Zong
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yulong Li
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guisheng Liu
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yifei Lv
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yunqing Zhu
- Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Cai KT, Liu AG, Wang ZF, Jiang HW, Zeng JJ, He RQ, Ma J, Chen G, Zhong JC. Expression and potential molecular mechanisms of miR‑204‑5p in breast cancer, based on bioinformatics and a meta‑analysis of 2,306 cases. Mol Med Rep 2018; 19:1168-1184. [PMID: 30569120 PMCID: PMC6323248 DOI: 10.3892/mmr.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. However, there is insufficient research that focuses on the expression and molecular mechanisms of microRNA (miR)‑204‑5p in BC. In the current study, data were downloaded from the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena databases. They were then used to undertake a meta‑analysis that leveraged the standard mean difference (SMD) and summarized receiver operating characteristic (sROC) to evaluate the expression of the precursor miR‑204 and mature miR‑204‑5p in BC. Additionally, an intersection of predicted genes, differentially expressed genes (DEGs) from the TCGA database and the GEO database were plotted to acquire desirable putative genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein‑protein interaction (PPI) network analyses were performed to assess the potential pathways and hub genes of miR‑204‑5p in BC. A decreased trend in precursor miR‑204 expression was detected in 1,077 BC tissue samples in comparison to 104 para‑carcinoma tissue samples in the TCGA database. Further, the expression of mature miR‑204‑5p was markedly downregulated in 756 BC tissue samples in comparison to 76 para‑carcinoma tissue samples in the UCSC Xena database. The outcome of the SMD from meta‑analysis also indicated that the expression of miR‑204‑5p was markedly reduced in 2,306 BC tissue samples in comparison to 367 para‑carcinoma tissue samples. Additionally, the ROC and sROC values indicated that miR‑204‑5p had a great discriminatory capacity for BC. In GO analysis, 'cell development', 'cell surface activity', and 'receptor agonist activity' were the most enriched terms; in KEGG analysis, 'endocytosis' was significantly enriched. Rac GTPase activating protein 1 (RACGAP1) was considered the hub gene in the PPI network. In conclusion, miR‑204‑5p may serve a suppressor role in the oncogenesis and advancement of BC, and miR‑204‑5p may have crucial functions in BC by targeting RACGAP1.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ze-Feng Wang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hang-Wei Jiang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
28
|
Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition. Noncoding RNA 2018; 4:ncrna4020014. [PMID: 29843425 PMCID: PMC6027143 DOI: 10.3390/ncrna4020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key biological process involved in a multitude of developmental and pathological events. It is characterized by the progressive loss of cell-to-cell contacts and actin cytoskeletal rearrangements, leading to filopodia formation and the progressive up-regulation of a mesenchymal gene expression pattern enabling cell migration. Epithelial-to-mesenchymal transition is already observed in early embryonic stages such as gastrulation, when the epiblast undergoes an EMT process and therefore leads to the formation of the third embryonic layer, the mesoderm. Epithelial-to-mesenchymal transition is pivotal in multiple embryonic processes, such as for example during cardiovascular system development, as valve primordia are formed and the cardiac jelly is progressively invaded by endocardium-derived mesenchyme or as the external cardiac cell layer is established, i.e., the epicardium and cells detached migrate into the embryonic myocardial to form the cardiac fibrous skeleton and the coronary vasculature. Strikingly, the most important biological event in which EMT is pivotal is cancer development and metastasis. Over the last years, understanding of the transcriptional regulatory networks involved in EMT has greatly advanced. Several transcriptional factors such as Snail, Slug, Twist, Zeb1 and Zeb2 have been reported to play fundamental roles in EMT, leading in most cases to transcriptional repression of cell⁻cell interacting proteins such as ZO-1 and cadherins and activation of cytoskeletal markers such as vimentin. In recent years, a fundamental role for non-coding RNAs, particularly microRNAs and more recently long non-coding RNAs, has been identified in normal tissue development and homeostasis as well as in several oncogenic processes. In this study, we will provide a state-of-the-art review of the functional roles of non-coding RNAs, particularly microRNAs, in epithelial-to-mesenchymal transition in both developmental and pathological EMT.
Collapse
|
29
|
Qian B, Wang X, Mao C, Jiang Y, Shi Y, Chen L, Liu S, Wang B, Pan S, Tao Y, Shi H. Long non-coding RNA linc01433 promotes migration and invasion in non-small cell lung cancer. Thorac Cancer 2018. [PMID: 29532622 PMCID: PMC5928388 DOI: 10.1111/1759-7714.12623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background For many years, lung cancer has been the most common and deadly cancer worldwide. Early diagnosis of non‐small cell lung cancer (NSCLC) in particular is very difficult because the symptoms are often ignored. The five‐year survival rate is very low despite great improvements to therapy. Thus, there is an urgent need to identify prognostic biomarkers and target molecules for the clinical diagnosis and individualized treatment of NSCLC. Methods We performed quantitative real‐time PCR to determine the expression levels of the long non‐coding RNA (lncRNA) linc01433 in NSCLC and normal matched lung tissue. Subsequently, we established cell lines with overexpression or knockdown of linc01433 to evaluate the effects on proliferation and metastasis in vitro. Epithelial‐to‐mesenchymal transition was examined using Western blot. Results Linc01433 was significantly overexpressed in NSCLC tissues compared to normal lung tissues. In addition, linc01433 levels were associated with smoking history. Linc01433 overexpression in lung cancer cells increased proliferation, migration, and invasion abilities, as well as epithelial‐to‐mesenchymal transition. Conclusions Linc01433 is a cancer‐related lncRNA that may have an oncogene‐like effect in NSCLC.
Collapse
Affiliation(s)
- Banglun Qian
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Yiqun Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China
| | - Shuang Liu
- Institutes of Medical Sciences, Xiangya Hospital, Central South University, Hunan, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Shu Pan
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Hunan, China.,Institutes of Medical Sciences, Xiangya Hospital, Central South University, Hunan, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou University, Jiangsu, China
| |
Collapse
|
30
|
Ma S, Jia W, Ni S. miR-199a-5p inhibits the progression of papillary thyroid carcinoma by targeting SNAI1. Biochem Biophys Res Commun 2018; 497:181-186. [DOI: 10.1016/j.bbrc.2018.02.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
|
31
|
Ye ZH, Wen DY, Cai XY, Liang L, Wu PR, Qin H, Yang H, He Y, Chen G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: a comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017; 8:104960-104980. [PMID: 29285225 PMCID: PMC5739612 DOI: 10.18632/oncotarget.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023] Open
Abstract
Purpose The prognostic role of miR-204-5p (previous ID: miR-204) is varied and inconclusive in diverse types of malignant neoplasm. Therefore, the purposes of the study comprehensively explore the overall prognostic role of miR-204-5p based on high-throughput microRNA sequencing data, and to investigate the potential role of miR-204-5p via bioinformatics approaches. Materials and Methods The data of microRNA sequencing and survival were downloaded from The Cancer Genome Atlas (TCGA), and the prognostic value of miR-204-5p was analyzed by using Kaplan-Meier and univariate cox regressions. Then a meta-analysis was conducted with all TCGA data and relevant studies collected from literature. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The prospective molecular mechanism of miR-204-5p was also assessed at a functional level with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-to-protein interactions (PPI) network. Results From TCGA data, the prognostic value of miR-204-5p obviously varied among 20 types of cancers. The pooled HR was 0.928 (95% CI: 0.774-1.113, P = 0.386, 6203 cases of malignancies). For the meta-analysis based on 15 studies from literature, the pooled HR was 0.420 (95% CI: 0.306-0.576, P < 0.001, 1783 cases of malignancies) for overall survival (OS). Furthermore, the combined HR from both TCGA and literature was 0.708 (95% CI: 0.600-0.834, P < 0.001, 7986 cases of malignancies). Subgroup analyses revealed that miR-204-5p could act as a prognostic marker in cancers of respiratory system and digestive system. Functional analysis was conducted on genes predicted as targets (n = 2057) after the overlay genes from six out of twelve software were extracted. Two significant KEGG pathways were enriched (hsa04360: Axon guidance and hsa04722: Neurotrophin signaling pathway). PPI network revealed some hub genes/proteins (CDC42, SOS1, PIK3R1, MAPK1, PLCG1, ESR1, MAPK11, and AR). Conclusions The current study demonstrates that over-expression of miR-204-5p could be a protective factor for a certain group of cancers. Clinically, the low miR-204-5p level could gain a predictive value for a poor survival in cancers of respiratory system and digestive system. The detailed molecular mechanisms of miR-204-5p remain to be verified.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pei-Rong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
32
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
33
|
Shi Y, Chen X, Xi B, Yu X, Ouyang J, Han C, Qin Y, Wu D, Shen H. SNP rs3202538 in 3'UTR region of ErbB3 regulated by miR-204 and miR-211 promote gastric cancer development in Chinese population. Cancer Cell Int 2017; 17:81. [PMID: 28924391 PMCID: PMC5599891 DOI: 10.1186/s12935-017-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background/aims ErbB3 is an oncogene which has proliferation and metastasis promotion effects by several signaling pathways. However, the individual expression difference regulated by miRNA was almost still unknown. We focused on the miRNAs associated SNPs in the 3′-UTR of ErbB3 to investigate the further relationship of the SNPs with miRNAs among Chinese gastric cancer (GC) patients. Methods We performed case–control study including 851 GC patients and 799 cancer-free controls. Genotyping, real-time PCR assay, cell transfection, the dual luciferase reporter assay, western-blot, cell proliferation and trans-well based cell invasion assay were used to investigate the effects of the SNP on ErbB3 expression. Moreover, a 5-years-overall survival and relapse free survival were investigated between different genotypes. Results We found that patients suffering from Helicobacter pylori (Hp.) infection indicated to be the susceptible population by comparing with controls. Besides, SNP rs3202538 (G/T) in ErbB3 3′-UTR was involved in the occurrence of GC by acting as tumor risk factors. SNP rs3202538 (G/T) could be regulated by both miR-204 and miR-211 which caused an upregulation of ErbB3 in patients. Furthermore, the carriers of T genotype was related to the significantly high expression of ErbB3, and to big tumor size, poor differentiation as well as the high probability of metastasis. Both miR-211 and miR-204 can significantly decrease cell proliferation, metastasis as well as downstream AKT activation through G but not T allele of ErbB3 3′UTR. Moreover, the SNP of G/T was associated with shorter survival of post-surgery GC patients with 5 years of follow up study. Conclusion In conclusion, our findings have shown that the SNP rs3202538 (G/T) in ErbB3 3′-UTR acted as promotion factors in the GC development through disrupting the regulatory role of miR-204 and miR-211 in ErbB3 expression. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaxiang Shi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Xuan Chen
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Biao Xi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Xiaowen Yu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Jun Ouyang
- College of Jingjiang, Jiangsu University, Zhenjiang, China
| | - Chunxia Han
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Yucheng Qin
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Defeng Wu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Hong Shen
- Department of Gastroenterology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| |
Collapse
|
34
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
35
|
Lorenzon L, Cippitelli C, Avantifiori R, Uccini S, French D, Torrisi MR, Ranieri D, Mercantini P, Canu V, Blandino G, Cavallini M. Down-regulated miRs specifically correlate with non-cardial gastric cancers and Lauren's classification system. J Surg Oncol 2017; 116:184-194. [PMID: 28475823 DOI: 10.1002/jso.24648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Gastric cancers are usually characterized using Lauren's classification into intestinal and diffuse types. We previously documented the down-modulation of miR31, miR148a, miR204, and miR375 in gastric cancers. We aimed this manuscript to investigate these miRs with the end-points of diagnosis, Lauren's classification and prognosis. METHODS A total of 117 resected non-cardial adenocarcinomas were evaluated for miRs' expressions. The performance of miRs' expressions for cancer diagnosis was tested using ROC curves. Logistic regression was conducted with the end-point of Lauren's classification. Kaplan-Meier and Cox analyses were performed for OS, DFS, and DSS. miRs' targets were reviewed using PRISMA method and BCL-2 was further investigated in cell lines. RESULTS ROC curves documented that miRs' down-modulation was significant in differentiating cancer versus normal tissues. Diffuse type cancers were associated with female sex, young age, and miR375 higher expression. We confirmed BCL-2 as a miR204 target. However, survival analyses confirmed the pathologic criteria (advanced stages, LNR, and low LNH) as the significant variables correlated to worse prognosis. CONCLUSIONS The down-modulation of miR31, miR148a, miR204, and miR375 is significantly associated with non-cardial gastric cancers and miR375 is specifically linked to Lauren's classification. Nevertheless, standard pathological features display as the independent variables associated with worse prognosis.
Collapse
Affiliation(s)
- Laura Lorenzon
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Claudia Cippitelli
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Riccardo Avantifiori
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Stefania Uccini
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Deborah French
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Maria Rosaria Torrisi
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Danilo Ranieri
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Paolo Mercantini
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Valeria Canu
- Italian National Cancer Institute Regina Elena, Translational Oncogenomic Unit, Rome, Italy
| | - Giovanni Blandino
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Marco Cavallini
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| |
Collapse
|
36
|
A Downmodulated MicroRNA Profiling in Patients with Gastric Cancer. Gastroenterol Res Pract 2017; 2017:1526981. [PMID: 28546810 PMCID: PMC5436063 DOI: 10.1155/2017/1526981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Objective. Here, we aim to investigate the microRNA (miR) profiling in human gastric cancer (GC). Methods. Tumoral and matched peritumoral gastric specimens were collected from 12 GC patients who underwent routine surgery. A high-throughput miR sequencing method was applied to detect the aberrantly expressed miRs in a subset of 6 paired samples. The stem-loop quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to confirm the sequencing results in the remaining 6 paired samples. The profiling results were also validated in vitro in three human GC cell lines (BGC-823, MGC-803, and GTL-16) and a normal gastric epithelial cell line (GES-1). Results. The miR sequencing approach detected 5 differentially expressed miRs, hsa-miR-132-3p, hsa-miR-155-5p, hsa-miR-19b-3p, hsa-miR-204-5p, and hsa-miR-30a-3p, which were significantly downmodulated between the tumoral and peritumoral GC tissues. Most of the results were further confirmed by qRT-PCR, while no change was observed for hsa-miR-30a-3p. The in vitro finding also agreed with the results of both miR sequencing and qRT-PCR for hsa-miR-204-5p, hsa-miR-155-5p, and hsa-miR-132-3p. Conclusion. Together, our findings may serve to identify new molecular alterations as well as to enrich the miR profiling in human GC.
Collapse
|
37
|
MicroRNA-153-3p suppress cell proliferation and invasion by targeting SNAI1 in melanoma. Biochem Biophys Res Commun 2017; 487:140-145. [PMID: 28400282 DOI: 10.1016/j.bbrc.2017.04.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Malignant melanoma is one of the most common malignancies of the skin cancer and increasing evidences revealed that microRNAs (miRNAs) exert significant effects in melanoma. In the present study, the underlying function of microRNA-153-3p (miR-153-3p) in melanoma was investigated from different levels, including cell level, protein level and gene level. Our results showed that expression of miR-153-3p was lower in melanoma tissues and melanoma cells compared with the para-tumor tissue and normal melanocytes. The overexpression of miR-153-3p inhibited the cell proliferation and invasion, at the same time promoted cell apoptosis. Moreover, we identified that snail family transcriptional repressor 1 (SNAI1) is the direct target of miR-153-3p, and there is a negative correlation between miR-153-3p level and SNAI1 expression. In summary, we presented the evidences that miR-153-3p may act as a tumor suppressor by down-regulating the expression of SNAI1 in melanoma and miR-153-3p might be a potential biomarker in the diagnosis and treatment of malignant melanoma.
Collapse
|
38
|
RETRACTED: Downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients. Hum Pathol 2017; 63:46-52. [PMID: 28232157 DOI: 10.1016/j.humpath.2016.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Glioma is the most common type of malignant neoplasm in the central nervous system, with high incidence and mortality rate. MicroRNAs, as a class of small noncoding RNAs, play an important role in carcinogenesis and correlate with glioma diagnosis and prognosis. In this study, we investigated the microRNA-204 (miR-204) concentration in glioma tissues and its relation to the expression of ezrin and bcl-2 mRNA, as well as its potential predictive and prognostic values in glioma. The concentrations of miR-204 were significantly lower in glioma tissues than in nontumor brain tissues and also were lower in high-grade than in low-grade gliomas (World Health Organization grades III and IV versus grades I and II). The miR-204 concentration was inversely correlated with the ezrin and bcl-2 concentrations. The miR-204 concentration was classified as high or low according to the median value, and low miR-204 correlated with higher World Health Organization grade, larger tumor, and worse Karnofsky performance score. Kaplan-Meier survival analysis demonstrated that patients with low miR-204 expression had shorter progression-free survival and overall survival than patients with high miR-204 expression. In addition, univariate and multivariate analyses showed that miR-204 expression was an independent prognostic feature of overall survival and progression-free survival. In conclusion, our study indicates that miR-204 is downregulated in glioma and may be a biomarker of poor prognosis in patients with this cancer.
Collapse
|
39
|
Venø MT, Venø ST, Rehberg K, van Asperen JV, Clausen BH, Holm IE, Pasterkamp RJ, Finsen B, Kjems J. Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204. Front Mol Neurosci 2017; 10:31. [PMID: 28232790 PMCID: PMC5299138 DOI: 10.3389/fnmol.2017.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2017] [Indexed: 01/26/2023] Open
Abstract
The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical folding. These miRNAs were found to target Doublecortin (DCX), known to be involved in neuron migration during cortical folding of gyrencephalic brains. In vivo modulation of miRNA expression in mouse embryos confirmed that miR-34c and miR-204 can control neuronal migration and cortical morphogenesis, presumably by posttranscriptional regulation of DCX.
Collapse
Affiliation(s)
- Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| | - Susanne T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| | - Kati Rehberg
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bettina H Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital Randers, Denmark
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bente Finsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| |
Collapse
|
40
|
Wang K, Jin W, Jin P, Fei X, Wang X, Chen X. miR-211-5p Suppresses Metastatic Behavior by Targeting SNAI1 in Renal Cancer. Mol Cancer Res 2017; 15:448-456. [PMID: 28057716 DOI: 10.1158/1541-7786.mcr-16-0288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
The Snail family transcriptional repressor 1 (SNAI1) is known to promote metastatic phenotypes in renal cell carcinoma (RCC). However, the mechanism by which SNAI1 promotes RCC metastasis remains largely unexplored. Here, bioinformatics and quantitative validation revealed that miR-211-5p was downregulated in metastatic RCC clinical specimens compared with nonmetastatic RCC tissues. Overexpression of miR-211-5p suppressed RCC cell migration and invasion via downregulation of SNAI1 expression. Luciferase reporter assays demonstrated that miR-211-5p directly targeted 3'-UTR of SNAI1. Furthermore, miR-211-5p decreased xenograft tumor weight and reduced in vivo tumor metastasis in mice. These findings indicate that miR-211-5p-mediated inhibition of SNAIL1 expression contributes to the suppression of RCC progression.Implications: Targeting the miR-211-5p/SNAI1 signaling pathway may be a novel therapeutic approach for the treatment of RCC metastasis. Mol Cancer Res; 15(4); 448-56. ©2017 AACR.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
41
|
Yuan X, Wang S, Liu M, Lu Z, Zhan Y, Wang W, Xu AM. Histological and Pathological Assessment of miR-204 and SOX4 Levels in Gastric Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6894675. [PMID: 28133610 PMCID: PMC5241485 DOI: 10.1155/2017/6894675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
Gastric cancer is one of the most common cancers and the efficient therapeutic methods are limited. Further study of the exact molecular mechanism of gastric cancer to develop novel targeted therapies is necessary and urgent. We herein systematically examined that miR-204 suppressed both proliferation and metastasis of gastric cancer AGS cells. miR-204 directly targeted SOX4. In clinical tissue research, we determined that miR-204 was expressed much lower and SOX4 expressed much higher in gastric cancer tissues compared with normal gastric tissues. Associated analysis with clinicopathological parameters in gastric cancer patients showed miR-204 was associated with no lymph node metastasis and early tumor stages whereas SOX4 was associated with lymph node metastasis and advanced tumor stages. In addition, miR-204 and SOX4 were negatively correlated in tissues from gastric cancer patients. Our findings examined the important role of miR-204 and SOX4 played in gastric cancer, and they could be used as candidate therapeutic targets for gastric cancer therapy.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanqing Zhan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - A-Man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
42
|
Xin R, Bai F, Feng Y, Jiu M, Liu X, Bai F, Nie Y, Fan D. MicroRNA-214 promotes peritoneal metastasis through regulating PTEN negatively in gastric cancer. Clin Res Hepatol Gastroenterol 2016; 40:748-754. [PMID: 27339596 DOI: 10.1016/j.clinre.2016.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/24/2016] [Accepted: 05/03/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE We aimed to investigate the effects of microRNA-214 (miR-214) on peritoneal metastasis as well as to elucidate its regulatory mechanism in gastric cancer (GC). METHODS The expression levels of miR-214 in human GC cell lines MKN-28NM, MKN-28M, GC9811 and GC9811-P were analyzed by quantitative real-time PCR. Lentiviral miR-214, lentiviral miR-214 inhibitor, and empty lentiviral vector were transfected to GC cell lines, respectively. The roles of miR-214 in cell invasion, migration, proliferation and colony-forming ability were then analyzed. Besides, the expression levels of PTEN in different transfected cells were determined by western blot analysis. RESULTS We found that miR-214 was up-regulated in GC9811-P cells with high metastatic potential to the peritoneum compared with that in GC9811 cells. In addition, in vitro overexpression of miR-214 promoted cell invasion, migration, proliferation and colony-forming ability of GC9811 cells, while down-regulation of miR-214 had opposite effects in GC9811-P cells. Besides, overexpression of miR-214 in GC9811 cells markedly down-regulated PTEN expression, whereas down-regulation of miR-214 in GC9811-P cells significantly increased PTEN expression. CONCLUSIONS Our findings indicate that miR-214 may promote peritoneal metastasis of GC cells via down-regulation of PTEN, thus leading to the progression of GC.
Collapse
Affiliation(s)
- Ruijuan Xin
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Feihu Bai
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Yaning Feng
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Mengna Jiu
- Ningxia Medical University, Yinchuan, China
| | | | - Fangyun Bai
- Affiliated Hospital of Ningxia Medical University, Department of Gastroenterology, Yinchuan, China
| | - Yongzhan Nie
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Beilin District, Changlexi Road, 710000 Xi'an, China.
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Beilin District, Changlexi Road, 710000 Xi'an, China
| |
Collapse
|
43
|
Jiao C, Song Z, Chen J, Zhong J, Cai W, Tian S, Chen S, Yi Y, Xiao Y. lncRNA-UCA1 enhances cell proliferation through functioning as a ceRNA of Sox4 in esophageal cancer. Oncol Rep 2016; 36:2960-2966. [PMID: 27667646 DOI: 10.3892/or.2016.5121] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common gastrointestinal cancers, which leads to the sixth ranking of cancer-related death. Long non-coding RNAs (lncRNAs) play pivotal roles in many biological processes. lncRNA human urothelial carcinoma associated 1 (UCA1) is significantly upregulated and functions as an important oncogene in many types of human cancers. However, the role of UCA1 in EC and its underlying mechanism remains unclear. In the present study, we demonstrated that UCA1 was significantly upregulated in EC tissues and associated with poor prognosis. Overexpression of UCA1 promoted the proliferation of EC cells, while silence of UCA1 inhibited EC cells growth. Furthermore, we found that Sox4 was a direct target gene of UCA1. UCA1 regulated Sox4 expression through functioning as a competing endogenous RNA (ceRNA). UCA1 directly interacted with miR-204 and decreased the binding of miR-204 to Sox4 3'UTR, which suppressed the degradation of Sox4 mRNA by miR-204. This study provides the first evidence that UCA1 promotes cell proliferation through Sox4 in EC, suggesting that UCA1 and Sox4 may be potential therapeutic targets for EC.
Collapse
Affiliation(s)
- Changjie Jiao
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Zhiming Song
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Jianming Chen
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Jing Zhong
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Weibin Cai
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Suke Tian
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Songlin Chen
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Yunfeng Yi
- Department of Thoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian, P.R. China
| | - Yun Xiao
- Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|