1
|
Wu S, Hu C, Hui K, Jiang X. Non-immune functions of B7-H3: bridging tumor cells and the tumor vasculature. Front Oncol 2024; 14:1408051. [PMID: 38952550 PMCID: PMC11215132 DOI: 10.3389/fonc.2024.1408051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
B7-H3 (CD276), an immune checkpoint molecule, is overexpressed in various types of cancer and their tumor vasculature, demonstrating significant associations with adverse clinical outcomes. In addition to its well-known immune functions, B7-H3 exhibits dual co-stimulatory/co-inhibitory roles in normal physiology and the tumor microenvironment. The non-immune functions of B7-H3 in tumor cells and the tumor vasculature, including promoting tumor cell anti-apoptosis, proliferation, invasion, migration, drug resistance, radioresistance, as well as affecting cellular metabolism and angiogenesis, have increasingly gained attention from researchers. Particularly, the co-expression of B7-H3 in both tumor cells and tumor endothelial cells highlights the higher potential and clinical utility of therapeutic strategies targeting B7-H3. This review aims to summarize the recent advances in understanding the non-immune functions of B7-H3 in tumors and provide insights into therapeutic approaches targeting B7-H3, focusing on its co-expression in tumor cells and endothelial cells. The aim is to establish a theoretical foundation and practical reference for the development and optimization of B7-H3-targeted therapies.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
2
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Alhamad S, Elmasry Y, Uwagboe I, Chekmeneva E, Sands C, Cooper BW, Camuzeaux S, Salam A, Parsons M. B7-H3 Associates with IMPDH2 and Regulates Cancer Cell Survival. Cancers (Basel) 2023; 15:3530. [PMID: 37444640 DOI: 10.3390/cancers15133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.
Collapse
Affiliation(s)
- Salwa Alhamad
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassmin Elmasry
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Isabel Uwagboe
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Benjamin W Cooper
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Ash Salam
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| |
Collapse
|
4
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
5
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
6
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Feng R, Chen Y, Liu Y, Zhou Q, Zhang W. The role of B7-H3 in tumors and its potential in clinical application. Int Immunopharmacol 2021; 101:108153. [PMID: 34678689 DOI: 10.1016/j.intimp.2021.108153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
B7-H3 (CD276 molecule) is an immune checkpoint from the B7 family of molecules that acts more as a co-inhibitory molecule to promote tumor progression. It is abnormally expressed on tumor cells and can be induced to express on antigen-presenting cells (APCs) including dendritic cells (DCs) and macrophages. In the tumor microenvironment (TME), B7-H3 promotes tumor progression by impairing T cell response, promoting the polarization of tumor-associated macrophages (TAMs) to M2, inhibiting the function of DCs, and promoting the migration and invasion of cancer-associated fibroblasts (CAFs). In addition, through non-immunological functions, B7-H3 promotes tumor cell proliferation, invasion, metastasis, resistance, angiogenesis, and metabolism, or in the form of exosomes to promote tumor progression. In this process, microRNAs can regulate the expression of B7-H3. B7-H3 may serve as a potential biomarker for tumor diagnosis and a marker of poor prognosis. Immunotherapy targeting B7-H3 and the combination of B7-H3 and other immune checkpoints have shown certain efficacy. In this review, we summarized the basic characteristics of B7-H3 and its mechanism to promote tumor progression by inducing immunosuppression and non-immunological functions, as well as the potential clinical applications of B7-H3 and immunotherapy based on B7-H3.
Collapse
Affiliation(s)
- Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Lee JB, Ha SJ, Kim HR. Clinical Insights Into Novel Immune Checkpoint Inhibitors. Front Pharmacol 2021; 12:681320. [PMID: 34025438 PMCID: PMC8139127 DOI: 10.3389/fphar.2021.681320] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The success of immune checkpoint inhibitors (ICIs), notably anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) as well as inhibitors of CTLA-4, programmed death 1 (PD-1), and programmed death ligand-1 (PD-L1), has revolutionized treatment options for solid tumors. However, the lack of response to treatment, in terms of de novo or acquired resistance, and immune related adverse events (IRAE) remain as hurdles. One mechanisms to overcome the limitations of ICIs is to target other immune checkpoints associated with tumor microenvironment. Immune checkpoints such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7 homolog 3 protein (B7-H3), inducible T cell costimulatory (ICOS), and B and T lymphocyte attenuator (BTLA) are feasible and promising options for treating solid tumors, and clinical trials are currently under active investigation. This review aims to summarize the clinical aspects of the immune checkpoints and introduce novel agents targeting these checkpoints.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Hemato-oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
The expression of B7-H3 isoforms in newly diagnosed glioblastoma and recurrence and their functional role. Acta Neuropathol Commun 2021; 9:59. [PMID: 33795013 PMCID: PMC8017683 DOI: 10.1186/s40478-021-01167-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Short survival of glioblastoma (GBM) patients is due to systematic tumor recurrence. Our laboratory identified a GBM cell subpopulation able to leave the tumor mass (TM) and invade the subventricular zone (SVZ-GBM cells). SVZ-GBM cells escape treatment and appear to contribute to GBM recurrence. This study aims to identify proteins specifically expressed by SVZ-GBM cells and to define their role(s) in GBM aggressiveness and recurrence. The proteome was compared between GBM cells located in the initial TM and SVZ-GBM cells using mass spectrometry. Among differentially expressed proteins, we confirmed B7-H3 by western blot (WB) and quantitative RT-PCR. B7-H3 expression was compared by immunohistochemistry and WB (including expression of its isoforms) between human GBM (N = 14) and non-cancerous brain tissue (N = 8), as well as newly diagnosed GBM and patient-matched recurrences (N = 11). Finally, the expression of B7-H3 was modulated with short hairpin RNA and/or over-expression vectors to determine its functional role in GBM using in vitro assays and a xenograft mouse model of GBM. B7-H3 was a marker for SVZ-GBM cells. It was also increased in human GBM pericytes, myeloid cells and neoplastic cells. B7-H3 inhibition in GBM cells reduced their tumorigenicity. Out of the two B7-H3 isoforms, only 2IgB7-H3 was detected in non-cancerous brain tissue, whereas 4IgB7-H3 was specific for GBM. 2IgB7-H3 expression was higher in GBM recurrences and increased resistance to temozolomide-mediated apoptosis. To conclude, 4IgB7-H3 is an interesting candidate for GBM targeted therapies, while 2IgB7-H3 could be involved in recurrence through resistance to chemotherapy.
Collapse
|
10
|
Hu X, Xu M, Hu Y, Li N, Zhou L. B7-H3, Negatively Regulated by miR-128, Promotes Colorectal Cancer Cell Proliferation and Migration. Cell Biochem Biophys 2021; 79:397-405. [PMID: 33743142 DOI: 10.1007/s12013-021-00975-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND B7 homolog 3 (B7-H3), a member of the immunoregulatory ligand B7 family, is pivotal in T-cell-mediated immune response. It is widely expressed in diverse human tumors and its high expression indicates the poor prognosis of the patients. Nonetheless, B7-H3's role in colorectal cancer (CRC) needs to be further explored. METHODS Western blot and immunohistochemistry were employed for detecting B7-H3 protein expression in CRC tissues and cell lines, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for detecting B7-H3 mRNA and miR-128 expression levels. CRC cell lines SW620 and HT29 were used to construct B7-H3 overexpression or knockdown cell models, respectively. Cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), and scratch wound healing assays were employed for evaluating the effects of B7-H3 on CRC cell multiplication and migration. Besides, the regulatory relationship between miR-128 and B7-H3 was validated through dual-luciferase reporter gene assay, qRT-PCR, and western blotting. RESULTS B7-H3 expression level was remarkably elevated in CRC tissues and cell lines, and its high expression level was associated with increased tumor size, positive lymph node metastasis, and increased T stage. In CRC cells, B7-H3 overexpression significantly facilitated the cell multiplication and migration, while B7-H3 knockdown worked oppositely. Moreover, B7-H3 was identified as a target of miR-128, and miR-128 negatively regulated B7-H3 expression in CRC cells. CONCLUSION B7-H3 expression is upregulated in CRC tissues and cell lines, and B7-H3 participates in promoting the proliferation and migration of CRC cells. Besides, B7-H3 expression is negatively regulated by miR-128 in CRC.
Collapse
Affiliation(s)
- Xiaomao Hu
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China.
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Minxian Xu
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yangzhi Hu
- Department of Gastroenterology Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Na Li
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Lei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Zhou L, Jiang Z, Gu J, Gu W, Han S. B7-H3 and digestive system cancers. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers (DSC) are the most common cancers worldwide and often associated with poor prognosis because of their characteristics of invasive and metastatic. Thus, it is particularly necessary to find novel molecular targets for early diagnosis, as well as targeted treatment of DSC. B7-H3, which was previously referred to as a modulatory ligand that regulate T-cell-mediated immune reaction, is a B7-family member of co-stimulatory biomolecules, and in recent years it was found that its concentration was remarkably up modulated in serum, as well as tissues of DSC patients. Numerous studies have documented that B7-H3 has a vital function in the DSC. Herein, we summarize the current literature on diagnosis and prognosis potential of B7-H3 in DSC including those of the esophagus, gastric, liver, pancreas, and colon.
Collapse
Affiliation(s)
- Liyun Zhou
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Zhenhua Jiang
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Jing Gu
- Department of Dermatology, Henan Honliv Hospital, Changyuan
| | - Wenhui Gu
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Shuangyin Han
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| |
Collapse
|
12
|
Tung CL, Chen JC, Ko JC, Liu LL, Chien CC, Huang IH, Tsao YC, Cheng HH, Chen TY, Yen TC, Lin YW. Capsaicin Acts Through Reducing P38 MAPK-Dependent Thymidylate Synthase Expression to Enhance 5-Fluorouracil-Induced Cytotoxicity in Human Lung Cancer Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21993335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Capsaicin, an ingredient of green and red bell peppers, shows anticancer activity in several malignant cell lines. Thymidylate synthase (TS) is a well-validated anticancer drug target in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and 5-fluorouracil (5-FU) induce synergistic cytotoxicity in NSCLC cells by regulating TS expression is unclear. This study investigated the cytotoxicity of capsaicin and 5-FU co-treatment on two hoursuman lung adenocarcinoma cell lines, H520 and H1703, and the underlying mechanisms. Capsaicin decreased TS expression in a p38 mitogen-activated protein kinase (MAPK) inactivation–dependent manner in H520 and H1703 cells. Enhancement of p38 MAPK activity by transfection with constitutive active mitogen-activated protein kinase kinase six vectors increased TS expression and cell survival. In addition, capsaicin and 5-FU co-treatment enhanced synergistic cytotoxicity and inhibited cell growth associated with TS downregulation and p38 MAPK inactivation in H520 and H1703 cells. Capsaicin and 5-FU co-treatment did not affect the cellular content of capsaicin. These results show that capsaicin may be combined with 5-FU to treat NSCLC.
Collapse
Affiliation(s)
- Chun-Liang Tung
- Department of Health and Nutrition Biotechnology, Asia University, Taichung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi
| | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch
| | - Li-Ling Liu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Chin-Cheng Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - I-Hsiang Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yong-Cing Tsao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Hsiang-Hung Cheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi
| |
Collapse
|
13
|
Zhang T, Jin Y, Jiang X, Li L, Qi X, Mao Y, Hua D. Clinical and Prognostic Relevance of B7-H3 and Indicators of Glucose Metabolism in Colorectal Cancer. Front Oncol 2020; 10:546110. [PMID: 33042836 PMCID: PMC7523031 DOI: 10.3389/fonc.2020.546110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to investigate the clinical and prognostic relevance of B7-H3 expression and indicators of glucose metabolism in patients with colorectal cancer (CRC). Methods Using immunohistochemistry, the expression of B7-H3 was detected in a total of 213 formalin-fixed paraffin-embedded CRC tissue specimens. Furthermore, levels of fasting blood glucose (FBG), lactic dehydrogenase (LDH), and fructosamine (FMN) as indicators of glucose metabolism were analyzed in CRC patients and stratified into high or low expression sub-groups based on Youden Index. The relationship between B7-H3, FBG, LDH, FMN expression, and clinicopathological characteristics were also evaluated to establish their prognostic significance in patients with CRC. Results B7-H3 was highly expressed in CRC tissue. The positive rates of B7-H3 expression was 63.8% (136/213). We found a linear correlation between B7-H3 and FBG in depth of tumor invasion (T3/4) (p = 0.037, r = 0.259), lymph node metastasis (N0) (p = 0.004, r = 0.259), and TNM stage (I/II) (p = 0.009, r = 0.242). High expression of FBG, LDH, FMN [hazard ratio (HR) = 1.916, 95% CI: 1.223–3.00, p = 0.005; HR = 1.801, 95% CI: 1.153–2.813, p = 0.010; HR = 2.154, 95% CI: 1.336–3.472, p = 0.002], respectively, was identified as a significant independent predictor of poor overall survival (OS). Although B7-H3 expression did not affect OS, CRC patients expressing both high B7-H3 and high FMN contributed to a significant decrease in OS (HR = 1.881, 95%CI: 1.059–3.339, p = 0.031). Moreover, with low expression of B7-H3, high expression of FBG, LDH and FMN were also recognized as predictors of inferior OS (HR = 3.393, 95% CI: 1.493-7.709, p = 0.004; HR = 7.107, 95% CI: 2.785–18.138, p = 0.000; HR = 2.800, 95% CI: 1.184–6.625, p = 0.019). Conclusion B7-H3 combined with FBG, LDH, or FMN, could reflect the clinical outcomes of patients with CRC.
Collapse
Affiliation(s)
- Ting Zhang
- Institue of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufen Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Longhai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dong Hua
- Institue of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
15
|
Yang S, Wei W, Zhao Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci 2020; 16:1767-1773. [PMID: 32398947 PMCID: PMC7211166 DOI: 10.7150/ijbs.41105] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
B7-H3 (also known as CD276) is a newly found molecule of B7 family, which may be a promising target for cancer treatment. B7-H3 protein was demonstrated to be expressed in several kinds of tumor tissues including non-small-cell lung cancer (NSCLC) and prostate cancer. Its expression is highly associated with undesirable treatment outcomes and survival time, due to function of the immune checkpoint molecule. It was classified as either a co-stimulatory molecule for T cell activation or the nonimmunological role of regulating signaling pathways. Although there is still no agreed conclusion on the function of B7-H3, it may be a valuable target for cancer therapy. This review aims to provide a comprehensive, up-to-date summary of the advances in B7-H3 targeting approaches in cancer therapy. Although several challenges remain, B7-H3 offers a new therapeutic target with increased efficacy and less toxicity in future cancer treatment.
Collapse
Affiliation(s)
- Shuo Yang
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Wei Wei
- Guangdong Cord Blood Bank; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, China
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.,Biological Imaging & Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| |
Collapse
|
16
|
B7H3 regulates differentiation and serves as a potential biomarker and theranostic target for human glioblastoma. J Transl Med 2019; 99:1117-1129. [PMID: 30914782 DOI: 10.1038/s41374-019-0238-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
B7H3 (CD276), a co-stimulator molecule of the cell surface B7 protein superfamily, is expressed on glioblastomas (GBM). Recently, B7H3 functions beyond immune costimulation have been demonstrated. However, the mechanisms underlying B7H3 function are diverse and not well understood. GBM tumors contain undifferentiated self-renewing cells, which confound therapeutic attempts. We investigated the role of B7H3 in the regulation of GBM cell differentiation and the regulatory pathways involved. Analysis of public databases (TCGA, Rembrandt, and GEO NCBI) and RNA sequencing were performed to explore the role of B7H3 in GBM. Knockdown and overexpression of B7H3, were used to verify the downstream pathway in vitro. Further studies in vivo were performed to support the new finding. Bioinformatics analysis identified a correlation between the expression of B7H3, the expression of glioma self-renewing cell (GSC)-related genes, and MYC expression. These observations were verified by RNA-sequencing analyses in primary GBM cell lines. In vitro knockdown of B7H3-induced differentiation, associated with downregulation of SMAD6 (a TGF-β pathway inhibitor) and enhancement of SMAD1 phosphorylation-induced SMAD4 expression. Importantly, activation of the TGF-β pathway resulted in downregulation of MYC expression. In vivo assays conducted in a human GBM cell line xenograft mouse model demonstrated that B7H3 knockdown decreased MYC expression and inhibited tumor growth. B7H3 knockdown could regulate GBM differentiation by modulating MYC expression. So, B7H3 could serve as a potential theranostic target for the treatment of patients with GBM.
Collapse
|
17
|
Li Q, Wei L, Lin S, Chen Y, Lin J, Peng J. Synergistic effect of kaempferol and 5‑fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol Med Rep 2019; 20:728-734. [PMID: 31180555 DOI: 10.3892/mmr.2019.10296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/24/2019] [Indexed: 11/06/2022] Open
Abstract
Combination chemotherapy with chemosensitizers can exert synergistic therapeutic effects, reduce toxicity, and delay the induction of drug resistance. In the present study, the antitumor effects were investigated, and the possible underlying mechanisms of kaempferol combined with 5‑fluorouracil (5‑FU) in colorectal cancer cells were explored. HCT‑8 or HCT‑116 cells were treated with various concentrations of kaempferol and/or 5‑FU for the indicated time‑points. An MTT assay was used to determine cell viability, whereas the synergistic effects were assessed by calculating the combination indices of kaempferol and 5‑FU. Annexin V analysis and Hoechst staining were used to determine cell apoptosis. q‑PCR and western blotting were performed to determine the expression levels of Bax, Bcl‑2, thymidylate synthase (TS), PTEN, PI3K, AKT, and p‑AKT. The combination of kaempferol and 5‑FU was determined to be more effective in inhibiting cell viability than either of the agents alone. The inhibition of tumors in response to kaempferol and 5‑FU was associated with the reduction in proliferation ability and stimulation of apoptosis. The protein results indicated that kaempferol and 5‑FU could significantly upregulate the expression levels of Bax and downregulate the expression levels of Bcl‑2 and TS. Furthermore, the combination treatment greatly inhibited the activation of the PI3K/Akt pathway, suggesting the involvement of this pathway in the synergistic effects. The present study demonstrated that kaempferol has a synergistic effect with 5‑FU by inhibiting cell proliferation and inducing apoptosis in colorectal cancer cells via suppression of TS or attenuation of p‑Akt activation. The combination of kaempferol and 5‑FU may be used as an effective therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
18
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
19
|
Flem-Karlsen K, Tekle C, Øyjord T, Flørenes VA, Mælandsmo GM, Fodstad Ø, Nunes-Xavier CE. p38 MAPK activation through B7-H3-mediated DUSP10 repression promotes chemoresistance. Sci Rep 2019; 9:5839. [PMID: 30967582 PMCID: PMC6456585 DOI: 10.1038/s41598-019-42303-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Immunoregulatory protein B7-H3 is involved in the oncogenic and metastatic potential of cancer cells, as well as in drug resistance. Resistance to conventional chemotherapy is an important aspect of melanoma treatment, and a better understanding of how B7-H3 enhances drug resistance may lead to the development of more effective therapies. We investigated the in vitro and in vivo sensitivity of chemotherapeutic agents dacarbazine (DTIC) and cisplatin in sensitive and drug resistant melanoma cells with knockdown expression of B7-H3. We found that knockdown of B7-H3 increased in vitro and in vivo sensitivity of melanoma cells to the chemotherapeutic agents dacarbazine (DTIC) and cisplatin, in parallel with a decrease in p38 MAPK phosphorylation. Importantly, in B7-H3 knockdown cells we observed an increase in the expression of dual-specific MAP kinase phosphatase (MKP) DUSP10, a MKP known to dephosphorylate and inactivate p38 MAPK. DUSP10 knockdown by siRNA resulted in a reversion of the increased DTIC-sensitivity seen in B7-H3 knockdown cells. Our findings highlight the potential therapeutic benefit of combining chemotherapy with B7-H3 inhibition, and indicate that B7-H3 mediated chemoresistance in melanoma cells is driven through a mechanism involving DUSP10-mediated inactivation of p38 MAPK.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Tekle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Tove Øyjord
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Vivi A Flørenes
- Department of Pathology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT/The Arctic University of Norway, Tromsø, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
20
|
The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep 2019; 9:195. [PMID: 30655588 PMCID: PMC6336835 DOI: 10.1038/s41598-018-36808-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to 5-Fluorouracil chemotherapy is a major cause of therapeutic failure in colon cancer cure. Development of combined therapies constitutes an effective strategy to inhibit cancer cells and prevent the emergence of drug resistance. For this purpose, we investigated the anti-tumoral effect of thirteen phenolic compounds, from the Tunisian quince Cydonia oblonga Miller, alone or combined to 5-FU, on the human 5-FU-resistant LS174-R colon cancer cells in comparison to parental cells. Our results showed that only Kaempferol was able to chemo-sensitize 5-FU-resistant LS174-R cells. This phenolic compound combined with 5-FU exerted synergistic inhibitory effect on cell viability. This combination enhanced the apoptosis and induced cell cycle arrest of both chemo-resistant and sensitive cells through impacting the expression levels of different cellular effectors. Kaempferol also blocked the production of reactive oxygen species (ROS) and modulated the expression of JAK/STAT3, MAPK, PI3K/AKT and NF-κB. In silico docking analysis suggested that the potent anti-tumoral effect of Kaempferol, compared to its two analogs (Kaempferol 3-O-glucoside and Kampferol 3-O-rutinoside), can be explained by the absence of glucosyl groups. Overall, our data propose Kaempferol as a potential chemotherapeutic agent to be used alone or in combination with 5-FU to overcome colon cancer drug resistance.
Collapse
|
21
|
Dong P, Xiong Y, Yue J, Hanley SJB, Watari H. B7H3 As a Promoter of Metastasis and Promising Therapeutic Target. Front Oncol 2018; 8:264. [PMID: 30035102 PMCID: PMC6043641 DOI: 10.3389/fonc.2018.00264] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
B7H3 (also known as CD276, an immune checkpoint molecule) is aberrantly overexpressed in many types of cancer, and such upregulation is generally associated with a poor clinical prognosis. Recent discoveries indicate a crucial role for B7H3 in promoting carcinogenesis and metastasis. This review will focus on the latest developments relating specifically to the oncogenic activity of B7H3 and will describe the upstream regulators and downstream effectors of B7H3 in cancer. Finally, we discuss the emerging roles of microRNAs (miRNAs) in inhibiting B7H3-mediated tumor promotion. Excellent recent studies have shed new light on the functions of B7H3 in cancer and identified B7H3 as a critical promoter of tumor cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, cancer stemness, drug resistance, and the Warburg effect. Numerous miRNAs are reported to regulate the expression of B7H3. Our meta-analysis of miRNA database revealed that 17 common miRNAs potentially interact with B7H3 mRNA. The analysis of the TCGA ovarian cancer dataset indicated that low miR-187 and miR-489 expression was associated with poor prognosis. Future studies aimed at delineating the precise cellular and molecular mechanisms underpinning B7H3-mediated tumor promotion will provide further insights into the cell biology of tumor development. In addition, inhibition of B7H3 signaling, to be used alone or in combination with other treatments, will contribute to improvements in clinical practice and benefit cancer patients.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sharon J B Hanley
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). Int J Oncol 2018; 52:1041-1056. [PMID: 29484440 PMCID: PMC5843403 DOI: 10.3892/ijo.2018.4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
On the basis of immunological results, it is not in doubt that the immune system is able to recognize and eliminate transformed cells. A plethora of studies have investigated the immune system of patients with cancer and how it is prone to immunosuppression, due in part to the decrease in lymphocyte proliferation and cytotoxic activity. The series of experiments published following the demonstration by Dr Allison's group of the potential effect of anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) paved the way for a new perception in cancer immunotherapy: Immune checkpoints. Several T cell-co-stimulatory molecules including cluster of differentiation (CD)28, inducible T cell co-stimulatory, 4-1BB, OX40, glucocorticoid-induced tumor necrosis factor receptor-related gene and CD27, and inhibitory molecules including T cell immunoglobulin and mucin domain-containing-3, programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), V-domain immunoglobulin suppressor of T cells activation, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, and B and T lymphocyte attenuator have been described in regulating T cell functions, and have been demonstrated to be essential targets in immunotherapy. In preclinical studies, glioblastoma multiforme, a high-grade glioma, the monotherapy targeting PD-1/PD-L1 and CTLA-4 resulted in increased survival times. An improved understanding of the pharmacodynamics and immune monitoring on glioma cancers, particularly in diffuse intrinsic pontine glioma (DIPG), an orphan type of cancer, is expected to have a major contribution to the development of novel therapeutic approaches. On the basis of the recent preclinical and clinical studies of glioma, but not of DIPG, the present review makes a claim for the importance of investigating the tumor microenvironment, the immune response and the use of immune checkpoints (agonists or antagonists) in preclinical/clinical DIPG samples by immune monitoring approaches and high-dimensional analysis. Evaluating the potential predictive and correlative biomarkers in preclinical and clinical studies may assist in answering certain crucial questions that may be useful to improve the clinical response in patients with DIPG.
Collapse
|
23
|
Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res 2017; 357:59-66. [DOI: 10.1016/j.yexcr.2017.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
|
24
|
Flem-Karlsen K, Tekle C, Andersson Y, Flatmark K, Fodstad Ø, Nunes-Xavier CE. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells. Pigment Cell Melanoma Res 2017; 30:467-476. [PMID: 28513992 DOI: 10.1111/pcmr.12599] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAFV600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Tekle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
25
|
Astrocyte-elevated gene-1 confers resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase expression. Oncotarget 2017; 8:61901-61916. [PMID: 28977913 PMCID: PMC5617473 DOI: 10.18632/oncotarget.18717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have suggested that astrocyte-elevated gene-1 (AEG-1) contributes to the mechanisms of resistance to various chemotherapeutics. In this study, we investigated whether AEG-1 expression level correlated with that of thymidylate synthase (TS), as higher TS expression is known to be associated with the resistance to pemetrexed chemotherapy in patients with advanced lung adenocarcinoma. Using pemetrexed-resistant lung adenocarcinoma PC-9 cell line, we demonstrated that transfection of AEG-1 siRNA lowered TS expression and decreased pemetrexed IC50 value. In contrast, overexpression of AEG-1 was associated with increased expression of TS and higher pemetrexed IC50 value. Immunohistochemical staining of clinical biopsy samples showed that patients with lower AEG-1 expression had longer overall survival time. Moreover, analysis of repeated biopsy samples revealed that an increase in the TS level from baseline to disease progression was significantly associated with the elevation of AEG-1 expression. In conclusion, our data demonstrated that TS expression might be regulated by AEG-1 and that increased expression of these proteins contributes to lung cancer disease progression and may be associated with the development of resistance to pemetrexed.
Collapse
|
26
|
Li Y, Yang X, Wu Y, Zhao K, Ye Z, Zhu J, Xu X, Zhao X, Xing C. B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget 2017; 8:71725-71735. [PMID: 29069741 PMCID: PMC5641084 DOI: 10.18632/oncotarget.17847] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
B7-H3 (B7 homologue 3, CD276) is a member of the B7 immunoregulatory family and promotes tumor progression. The present study demonstrated that B7-H3 promotes gastric cancer cell migration and invasion. shRNA-mediated B7-H3 silencing in the N87 gastric cancer cell line suppressed cell migration and invasion in vitro and in vivo; downregulated metastasis-associated CXCR4; and inhibited AKT, ERK, and Jak2/Stat3 phosphorylation. B7-H3-silenced cells injected into the tail veins of 4-week-old female BALB/c nude mice produced fewer metastases than control cells, and resulted in longer survival times. Immunofluorescence analyses confirmed B7-H3/CXCR4 colocalization in N87 cells, and co-immunoprecipitation assays showed a direct interaction between the two proteins. Our analysis of 120 tissue samples from gastric cancer patients showed that increased B7-H3 expression correlated positively with both tumor infiltration depth and CXCR4 expression. These findings suggest that B7-H3 and CXCR4 may be novel targets for anti-gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xiaodong Yang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Yong Wu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Kui Zhao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Junjia Zhu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xiaohui Xu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xin Zhao
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| |
Collapse
|
27
|
Gu W, Zhang X, Yan Y, Wang Y, Huang L, Wang M, Shao X, Chen Z, Ji W. B7-H3 participates in the development of Asthma by augmentation of the inflammatory response independent of TLR2 pathway. Sci Rep 2017; 7:40398. [PMID: 28094276 PMCID: PMC5240336 DOI: 10.1038/srep40398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
B7-H3, a new member of the B7 superfamily, acts as both a T cell costimulator and coinhibitor. Recent studies identified B7-H3 plays a critical role in the development of asthma. But the definitive mechanism is not clear. In this study, we further report that B7-H3 participates in the development of OVA-induced asthma in a murine model. And study its mechanism through the vitro and vivo experiment. Exogenous administration of B7-H3 strongly amplified the inflammatory response and augmented proinflammatory cytokines in vitro and vivo. These B7-H3–associated proinflammatory effects were not dependent on TLR2 signaling, as airway inflammation, eosinophils infiltration and cytokins (IL-4, IL-5, IL-13 and IFN-gamma) augment were still amplified in TLR2-deficient mice after administrated recombinant mouse B7-H3. These results indicated an important role for B7-H3 in the development of Th1 and Th2 cells in a murine model of asthma and its proinflammatory effects are not dependent on TLR2 signaling.
Collapse
Affiliation(s)
- Wenjing Gu
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Xinxing Zhang
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Yongdong Yan
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Yuqing Wang
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Li Huang
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Meijuan Wang
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Xuejun Shao
- Department of Clinical laboratory, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Zhengrong Chen
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| | - Wei Ji
- Department of Respiration, Children's Hospital Affiliated to Soochow University, Suzhou 215003, China
| |
Collapse
|
28
|
Gupta HB, Clark CA, Yuan B, Sareddy G, Pandeswara S, Padron AS, Hurez V, Conejo-Garcia J, Vadlamudi R, Li R, Curiel TJ. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. Signal Transduct Target Ther 2016; 1. [PMID: 28798885 PMCID: PMC5547561 DOI: 10.1038/sigtrans.2016.30] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses.
Collapse
Affiliation(s)
- Harshita B Gupta
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Curtis A Clark
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX 78229
| | - Bin Yuan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Gangadhara Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229
| | - Srilakshmi Pandeswara
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Alvaro S Padron
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Vincent Hurez
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - José Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Ratna Vadlamudi
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229.,The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX 78229.,Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229
| | - Rong Li
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX 78229.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229
| | - Tyler J Curiel
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229.,The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX 78229.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229.,Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|
29
|
Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression. Biochem Pharmacol 2016; 122:90-98. [DOI: 10.1016/j.bcp.2016.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
|
30
|
Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K, Liu Y, Turk MJ, Thedieck K, Hurez V, Li R, Vadlamudi R, Curiel TJ. Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Res 2016; 76:6964-6974. [PMID: 27671674 DOI: 10.1158/0008-5472.can-16-0258] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 01/09/2023]
Abstract
PD-L1 antibodies produce efficacious clinical responses in diverse human cancers, but the basis for their effects remains unclear, leaving a gap in the understanding of how to rationally leverage therapeutic activity. PD-L1 is widely expressed in tumor cells, but its contributions to tumor pathogenicity are incompletely understood. In this study, we evaluated the hypothesis that PD-L1 exerts tumor cell-intrinsic signals that are critical for pathogenesis. Using RNAi methodology, we attenuated PD-L1 in the murine ovarian cell line ID8agg and the melanoma cell line B16 (termed PD-L1lo cells), which express basal PD-L1. We observed that PD-L1lo cells proliferated more weakly than control cells in vitro As expected, PD-L1lo cells formed tumors in immunocompetent mice relatively more slowly, but unexpectedly, they also formed tumors more slowly in immunodeficient NSG mice. RNA sequencing analysis identified a number of genes involved in autophagy and mTOR signaling that were affected by PD-L1 expression. In support of a functional role, PD-L1 attenuation augmented autophagy and blunted the ability of autophagy inhibitors to limit proliferation in vitro and in vivo in NSG mice. PD-L1 attenuation also reduced mTORC1 activity and augmented the antiproliferative effects of the mTORC1 inhibitor rapamycin. PD-L1lo cells were also relatively deficient in metastasis to the lung, and we found that anti-PD-L1 administration could block tumor cell growth and metastasis in NSG mice. This therapeutic effect was observed with B16 cells but not ID8agg cells, illustrating tumor- or compartmental-specific effects in the therapeutic setting. Overall, our findings extend understanding of PD-L1 functions, illustrate nonimmune effects of anti-PD-L1 immunotherapy, and suggest broader uses for PD-L1 as a biomarker for assessing cancer therapeutic responses. Cancer Res; 76(23); 6964-74. ©2016 AACR.
Collapse
Affiliation(s)
- Curtis A Clark
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas.,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Harshita B Gupta
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Gangadhara Sareddy
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas.,Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Srilakshmi Pandeswara
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Shunhua Lao
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Bin Yuan
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Justin M Drerup
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas.,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Alvaro Padron
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - José Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kruthi Murthy
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas.,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Yang Liu
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas.,Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Kathrin Thedieck
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands and Department for Neuroscience, School of Medicine and Health Sciences, University Oldenburg, Oldenburg, Germany
| | - Vincent Hurez
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Rong Li
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Ratna Vadlamudi
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas.,Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Tyler J Curiel
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, Texas. .,Department of Medicine, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|