1
|
Ding Y, Qin J, Zhang M, Wu H, Liu C, Guo Y, Wu W, Jiang Y, Zhang C, Ma Y, Chen X, Lu J, Liu K, Dong Z, Zhao J, Qiao Y. SRPK1 Activation Facilitates Gli3 S664 Phosphorylation and Promotes Metastasis in Esophageal Squamous Cell Carcinoma. Mol Carcinog 2025. [PMID: 40222042 DOI: 10.1002/mc.23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) stands out as one of the most malignant digestive tumors, with its prognosis marred by frequent metastasis and recurrence. However, the mechanism behind ESCC metastasis remains elusive, impeding therapeutic advancements. SRPK1 emerges as an independent prognostic marker for ESCC patients. Our research illuminates the consequential role of SRPK1, where its genetic knockout led to decreased levels of transcription factors Snail and Slug, concomitant with an enhanced expression of the cell-to-cell adhesion protein E-cadherin. Conversely, reintroducing an overexpression of SRPK1 reversed the effects, highlighting its essential role in ESCC metastasis. Through bioinformatics analysis, we identified a correlation between SRPK1 and Gli3. Furthermore, increased levels of Gli3 and its phosphorylated form, p-Gli3S664, were detected in ESCC tissues, which are implicated in promoting ESCC metastasis. Notably, our research confirmed that SRPK1 promotes migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells through phosphorylates Gli3 at ser 664. Additional investigations reveal that dihydroartemisinin (DHA) effectively impedes ESCC cell metastasis by suppressing SRPK1-mediated phosphorylation of Gli3S664 both in vitro and in vivo. Consequently, our study underscores the pivotal role of the SRPK1-p-Gli3S664 axis in ESCC metastasis and suggests DHA as a promising candidate for preventing ESCC metastasis by targeting this axis.
Collapse
Affiliation(s)
- Yongwei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shaoxing People Hospital, Shaoxing, Zhejiang, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Jiace Qin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjia Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiting Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Wenjie Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Chenjuan Zhang
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanying Ma
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinghuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemo-Prevention, Zhengzhou, China
| |
Collapse
|
2
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
3
|
Serine-Arginine Protein Kinase 1 (SRPK1): a systematic review of its multimodal role in oncogenesis. Mol Cell Biochem 2022; 477:2451-2467. [PMID: 35583632 PMCID: PMC9499919 DOI: 10.1007/s11010-022-04456-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine domains. Here we review SRPK1’s relationship with various cancers by performing a systematic review of all relevant published data. Elevated SRPK1 expression correlates with advanced disease stage and poor survival in many epithelial derived cancers. Numerous pre-clinical studies investigating a host of different tumour types; have found increased SRPK1 expression to be associated with proliferation, invasion, migration and apoptosis in vitro as well as tumour growth, tumourigenicity and metastasis in vivo. Aberrant SRPK1 expression is implicated in various signalling pathways associated with oncogenesis, a number of which, such as the PI3K/AKT, NF-КB and TGF-Beta pathway, are implicated in multiple different cancers. SRPK1-targeting micro RNAs have been identified in a number of studies and shown to have an important role in regulating SRPK1 activity. SRPK1 expression is also closely related to the response of various tumours to platinum-based chemotherapeutic agents. Future clinical applications will likely focus on the role of SRPK1 as a biomarker of treatment resistance and the potential role of its inhibition.
Collapse
|
4
|
The GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic Potential. Int J Mol Sci 2021; 22:ijms22041678. [PMID: 33562358 PMCID: PMC7915938 DOI: 10.3390/ijms22041678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the “Find Individual Motif Occurrences” (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.
Collapse
|
5
|
Nikas IP, Themistocleous SC, Paschou SA, Tsamis KI, Ryu HS. Serine-Arginine Protein Kinase 1 (SRPK1) as a Prognostic Factor and Potential Therapeutic Target in Cancer: Current Evidence and Future Perspectives. Cells 2019; 9:cells9010019. [PMID: 31861708 PMCID: PMC7017105 DOI: 10.3390/cells9010019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer, a heterogeneous disease composed of tumor cells and microenvironment, is driven by deregulated processes such as increased proliferation, invasion, metastasis, angiogenesis, and evasion of apoptosis. Alternative splicing, a mechanism led by splicing factors, is implicated in carcinogenesis by affecting any of the processes above. Accumulating evidence suggests that serine-arginine protein kinase 1 (SRPK1), an enzyme that phosphorylates splicing factors rich in serine/arginine domains, has a prognostic and potential predictive role in various cancers. Its upregulation is correlated with higher tumor staging, grading, and shorter survival. SRPK1 is also highly expressed in the premalignant changes of some cancers, showing a potential role in the early steps of carcinogenesis. Of interest, its downregulation in preclinical models has mostly been tumor-suppressive and affected diverse processes heterogeneously, depending on the oncogenic context. In addition, targeting SRPK1 has enhanced sensitivity to platinum-based chemotherapy in some cancers. Lastly, its aberrant function has been noted not only in cancer cells but also in the endothelial cells of the microenvironment. Although the aforementioned evidence seems promising, more studies are needed to reinforce the use of SRPK1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (S.C.T.); (S.A.P.); (K.I.T.)
- Correspondence: ; Tel.: +357-22559633
| | - Sophie C. Themistocleous
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (S.C.T.); (S.A.P.); (K.I.T.)
| | - Stavroula A. Paschou
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (S.C.T.); (S.A.P.); (K.I.T.)
- Division of Endocrinology and Diabetes, “Aghia Sophia” Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos I. Tsamis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (S.C.T.); (S.A.P.); (K.I.T.)
- Neurosurgical Institute, Medical School, University of Ioannina, 45500 Ioannina, Greece
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, 03080 Seoul, Korea;
| |
Collapse
|
6
|
Xu Q, Liu H, Yu B, Chen W, Zhai L, Li X, Fang Y. Long noncoding RNA ZEB2-AS1 facilitates laryngeal squamous cell carcinoma progression by miR-6840-3p/PLXNB1 axis. Onco Targets Ther 2019; 12:7337-7345. [PMID: 31564916 PMCID: PMC6735660 DOI: 10.2147/ott.s212749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023] Open
Abstract
Purpose To investigate the role of zinc finger E‑box‑binding homeobox 2 antisense RNA 1 (ZEB2-AS1) in regulating laryngeal squamous cell carcinoma (LSCC) progression. Patients and methods In this retrospective study, we included all patients who underwent a surgical operation at The First Hospital of Qiqihaer City for LSCC. Then, we compared the expression of ZEB2-AS1 in LSCC tissues and paired healthy tissues. Besides, we also performed a series of functional assays, CCK8 assays, colony formation assays, and transwell assays to examine the functions of LSCC cells after knockdown of ZEB2-AS1. Through bioinformatics analysis, we predicted that ZEB2-AS1 binds to miR-6840-3p and targets PLXNB1. Results We indicated that the expression of ZEB2-AS1 was higher in LSCC tissues compared to the paired adjacent tissues, and ZEB2-AS1 was also highly expressed in LSCC cell lines. Furthermore, we discovered that ZEB2-AS1 promoted cell proliferation, migration and invasion and was associated with poor prognosis. To find the mechanism, we performed bioinformatics analysis. We identified that ZEB2-AS1 binds to miR-6840-3p and targets PLXNB1. Additionally, miR-6840-3p overexpression or knockdown of PLXNB1 decreased the abilities of cell migration and invasion. Conclusion These findings demonstrated that overexpression of ZEB2-AS1 promotes LSCC progression. Overexpression of miR-6840-3p or downregulation of PLXNB1 can abrogate ZEB2-AS1-mediated LSCC malignant development.
Collapse
Affiliation(s)
- Qiushi Xu
- Ear Nose and Throat Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - Hongyu Liu
- Ear Nose and Throat Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - Bing Yu
- Pathology Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - Wenjing Chen
- Pathology Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - Lili Zhai
- Pathology Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - XueYing Li
- Ear Nose and Throat Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| | - Yanchun Fang
- Pathology Department, Affiliated Qiqihar Hospital, Southern Medical University, The First Hospital of Qiqihaer City, Guangzhou, Heilongjiang 161000, People's Republic of China
| |
Collapse
|
7
|
Multifaceted Functional Role of Semaphorins in Glioblastoma. Int J Mol Sci 2019; 20:ijms20092144. [PMID: 31052281 PMCID: PMC6539029 DOI: 10.3390/ijms20092144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.
Collapse
|
8
|
Angelopoulou E, Piperi C. Emerging role of plexins signaling in glioma progression and therapy. Cancer Lett 2018; 414:81-87. [DOI: 10.1016/j.canlet.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
|
9
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
10
|
Xu X, Wei Y, Wang S, Luo M, Zeng H. Serine-arginine protein kinase 1 (SRPK1) is elevated in gastric cancer and plays oncogenic functions. Oncotarget 2017; 8:61944-61957. [PMID: 28977917 PMCID: PMC5617477 DOI: 10.18632/oncotarget.18734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
Serine-arginine protein kinase 1 (SRPK1) phosphorylates proteins involved in the regulation of several mRNA processing pathways including alternative splicing. SRPK1 has been reported to be over-expressed in multiple cancers including prostate, breast, lung and glioma. Several studies further identified that inhibition of SRPK1 showed tumor-suppressive effects, thus raising SRPK1 as a novel candidate chemotherapy target. Interestingly, SRPK1 plays tumor suppressing role in mouse embryonic fibroblasts, on that SRPK1-silencing induces cell transformation. Therefore, the effect of SRPK1 seems heterogeneously in different cell types and tissues. The existence and role of SRPK1 in gastric cancer (GC) hasn't been reported. Here we investigated the expression pattern of SRPK1 in GC by immunohistochemistry and found that it was up-regulated in tumor tissues, where its expression was correlated with tumor grade and prognosis. Further, we explored the signaling mechanism of SRPK1 in promoting GC progression, which revealed that both PP2A and DUSP6 phosphatases impaired the oncogenic effects of SRPK1. However, we didn't find any direct interaction between SRPK1 with PP2A or DUSP6, indicating PP2A and DUSP6 function by regulating the downstream effectors of SRPK1. Our study not only revealed the clinical significance of SRPK1 in GC, but also provided new evidence for its signaling modulation which is invaluable for novel chemotherapy development.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, 430060, China
| | - Yuehua Wei
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, 430060, China
| | - Shidong Wang
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, 430060, China
| | - Man Luo
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, 430060, China
| | - Heng Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|