1
|
Smereczańska M, Domian N, Młynarczyk G, Kasacka I. The Effect of CacyBP/SIP on the Phosphorylation of ERK1/2 and p38 Kinases in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:10362. [PMID: 37373509 DOI: 10.3390/ijms241210362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The prognosis for patients with RCC is very poor because this cancer is diagnosed mainly in the metastatic stage and is resistant to radio- and chemotherapy. According to recent research, CacyBP/SIP exhibits phosphatase activity against MAPK and may be involved in many cellular processes. This function has not been studied in RCC so far, so we decided to test whether CacyBP/SIP has phosphatase function against ERK1/2 and p38 in high-grade clear cell RCC. The research material consisted of fragments of clear cell RCC, whereas the comparative material consisted of the adjacent normal tissues. Immunohistochemistry and qRT-PCR were used to identify the expression of CacyBP/SIP, ERK1/2, and p38. The studies showed an increase in immunoreactivity and gene expression of the parameters examined in clear cell RCC compared with normal tissues. Only in the case of ERK1/2 was it shown that the expression of the MAPK3 gene was downregulated and the MAPK1 gene was higher in clear cell RCC. These studies demonstrated that CacyBP/SIP lacked phosphatase function against ERK1/2 and p38 in high-grade clear cell RCC. Further research is needed because a better understanding of the role of CacyBP/SIP and MAPK offers hope for the treatment of urological cancer.
Collapse
Affiliation(s)
- Magdalena Smereczańska
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Grzegorz Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
2
|
Leśniak W, Bohush A, Maksymowicz M, Piwowarczyk C, Karolak NK, Jurewicz E, Filipek A. Involvement of CacyBP/SIP in differentiation and the immune response of HaCaT keratinocytes. Immunobiology 2023; 228:152385. [PMID: 37156124 DOI: 10.1016/j.imbio.2023.152385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
CacyBP/SIP is a multifunctional protein present in various cells and tissues. However, its expression and role in the epidermis has not been explored so far. In this work, using RT-qPCR, Western blot analysis and three-dimensional (3D) organotypic cultures of HaCaT keratinocytes we show that CacyBP/SIP is present in the epidermis. To investigate the possible role of CacyBP/SIP in keratinocytes we obtained CacyBP/SIP knockdown cells and studied the effect of CacyBP/SIP deficiency on their differentiation and response to viral infection. We found that CacyBP/SIP knockdown results in reduced expression of epidermal differentiation markers in both undifferentiated and differentiated HaCaT cells. Since epidermis is engaged in immune defense, the impact of CacyBP/SIP knockdown on this process was also analyzed. By applying RT-qPCR and Western blot it was found that poly(I:C), a synthetic analog of double-stranded RNA that mimics viral infection, stimulated the expression of genes involved in antiviral response, such as IFIT1, IFIT2 and OASL. Interestingly, following poly(I:C) stimulation, the level of expression of these genes was significantly lower in cells with CacyBP/SIP knockdown than control ones. Since the signaling pathway mediating cellular responses to viral infection involves, among others, the STAT1 transcription factor, we measured its activity using luciferase assay and found that it was lower in CacyBP/SIP knockdown HaCaT cells. Altogether, the presented results indicate that CacyBP/SIP promotes epidermal differentiation and might be involved in response of the skin cells to viral infection.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Maksymowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Cezary Piwowarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Natalia Katarzyna Karolak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Department of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
3
|
Gopinath P, Veluswami S, Gopisetty G, Sundersingh S, Rajaraman S, Thangarajan R. Identification of tumor biomarkers for pathological complete response to neoadjuvant treatment in locally advanced breast cancer. Breast Cancer Res Treat 2022; 194:207-220. [PMID: 35597840 DOI: 10.1007/s10549-022-06617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic response predictors like age, nodal status, and tumor grade and markers, like ER/PR, HER2, and Ki67, are not reliable in predicting the response to a specific form of chemotherapy. The current study aims to identify and validate reliable markers that can predict pathological complete response (pCR) in fluorouracil, epirubicin, and cyclophosphamide (FEC)-based neoadjuvant therapy with (NACT/RT) and without concurrent radiation (NACT). MATERIALS AND METHODS Tandem mass tag (TMT) quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins from core needle breast biopsy between pCR (n = 4) and no-pCR (n = 4). Immunoblotting of shortlisted proteins with the tissue lysates confirmed the differential expression of the markers. Further, immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded sections of treatment-naive core needle biopsies. In the NACT, 29 pCR and 130 no-pCR and in NACT/RT, 32 pCR and 71 no-pCR were used. RESULTS 733 and 807 proteins were identified in NACT and NACT/RT groups, respectively. Ten proteins were shortlisted for validation as potential pCR-predictive markers. THBS1, TNC, and DCN were significantly overexpressed in no-pCR in both the groups. In NACT, CPA3 was significantly upregulated in the no-pCR. In NACT/RT, HnRNPAB was significantly upregulated and HMGB1 significantly downregulated in the no-pCR. HMGB1 was the only marker to show prognostic significance. CONCLUSION Quantitative proteomics followed by IHC identified and validated potential biomarkers for predicting patient response to therapy. These markers can be used, following larger-scale validation, in combination with routine histological analysis providing vital indications of treatment response.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India
| | - Sridevi Veluswami
- Department of Surgical Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India.
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India.
| | - Shirley Sundersingh
- Department of Oncopatholology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Swaminathan Rajaraman
- Department of Epidemiology, Biostatistics and Cancer Registry, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Zheng H, Chen C. Downregulation of CacyBP by CRISPR/dCas9-KRAB Prevents Bladder Cancer Progression. Front Mol Biosci 2021; 8:692941. [PMID: 34179100 PMCID: PMC8226165 DOI: 10.3389/fmolb.2021.692941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BCa) is a leading cause of cancer-related death in the world. CacyBP is initially described as a binding partner of calcyclin and has been shown to be involved in a wide range of cellular processes, including cell differentiation, proliferation, protein ubiquitination, cytoskeletal dynamics and tumorigenesis. In the present study, we found that CacyBP expression was significantly upregulated in BCa tissues compared with adjacent normal tissues. Moreover, its expression was negatively correlated with overall survival time. Secondly, CacyBP had higher expressions in BCa cell lines than normal urothelial cells which was consistent with the results of BCa tissues. Finally, knockdown of CacyBP by CRIPSR-dCas9-KRAB in T24 and 5,637 BCa cells inhibited cell proliferation and migration by CCK-8 assay and scratch assay, and promoted apoptosis by caspase-3/ELISA. These data elucidate that CacyBP is an important oncogene contributing to malignant behavior of BCa and provide a potentially molecular target for treatment of BCa.
Collapse
Affiliation(s)
- Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chiheng Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Piotrowska Ż, Niezgoda M, Młynarczyk G, Acewicz M, Kasacka I. Comparative Assessment of the WNT/β-Catenin Pathway, CacyBP/SIP, and the Immunoproteasome Subunit LMP7 in Various Histological Types of Renal Cell Carcinoma. Front Oncol 2020; 10:566637. [PMID: 33330038 PMCID: PMC7717951 DOI: 10.3389/fonc.2020.566637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
Objective The Wnt/ß-catenin pathway plays an important role in pathogenesis of variety cancers. Most studies on changes in WNT/β-catenin pathway in renal cell carcinoma (RCC) apply only to clear cell RCC, while there are no comparative assessments of this signaling pathway in various histological types of renal tumors in the available literature. Additionally, considering the close relationship between WNT/β-catenin signaling, CacyBP/SIP and proteasomal activity, it seemed worth comparing WNT/β-catenin pathway, CacyBP/SIP and LMP7 immunoproteasome subunit in human samples of clear cell, papillary, and chromophobe RCC. Methods Tests were performed on sections of three types of kidney tumors together with surrounding unchanged tissue fragments collected from 50 patients. Samples were divided into three groups depending on the histological type of cancer: clear cell, papillary and chromophobe RCC. Immunohistochemistry and PCR methods were used to identify WNT10A, Fzd5, β-catenin, GSK-3ß, CacyBP/SIP, LMP7, and gene expression. Results Immunoreactivity and expression of WNT10A, Fzd5, β-catenin, GSK-3ß, CacyBP/SIP, LMP7 in clear cell RCC was markedly increased compared to non-cancerous kidney tissue. In papillary RCC, immunoreactivity and expression of WNT/β-catenin pathway, CacyBP/SIP, LMP7 was also increased compared to non-malignant kidneys, but it was less pronounced than in clear cell RCC. The least substantial increase in immunoreactivity and expression of WNT/β-catenin pathway, CacyBP/SIP, LMP7 was found in chromophobe RCC, compared to other RCC histological subtypes studied. Conclusions Study results suggest an important role of WNT/β-catenin pathway, CacyBP/SIP and LMP7 in RCC carcinogenesis, and may indicate new aspects of pathomechanisms leading to differences in the biology of clear cell, papillary and chromophobe RCC.
Collapse
Affiliation(s)
- Żaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Michał Niezgoda
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | | | - Magdalena Acewicz
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
6
|
Cysteine Proteases from V. cundinamarcensis ( C. candamarcensis) Inhibit Melanoma Metastasis and Modulate Expression of Proteins Related to Proliferation, Migration and Differentiation. Int J Mol Sci 2018; 19:ijms19102846. [PMID: 30241282 PMCID: PMC6212992 DOI: 10.3390/ijms19102846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies showed that P1G10, a proteolytic fraction from Vasconcellea cundinamarcensis latex, reduced the tumor mass in animals bearing melanoma, increased in vitro DNA fragmentation and decreased cell adhesion. Here, we present some molecular and cellular events related to the antimetastatic effect induced by the CMS-2 fraction derived from P1G10 in metastatic melanoma B16-F10 and melanocyte Melan-a. Using difference gel electrophoresis and mass spectrometry, we identified four proteins overexpressed in tumor cells, all of them related to proliferation, survival, migration and cell invasion, that had their expression normalized upon treatment with CMS-2: nucleophosmin 1, heat shock protein 65, calcyclin binding protein and eukaryotic translation initiation factor 4H. In addition, some antioxidant and glycolytic enzymes show increased expression after exposure to CMS-2, along with an induction of melanogenesis (differentiation marker). The down regulation of cofilin 1, a protein involved in cell motility, may explain the inhibition of cell migration and dendritic-like outgrowth in B16-F10 and Melan-a, observed after CMS-2 treatment. Taken together, it is argued that CMS-2 modulates the expression of proteins related to metastatic development, driving the cell to a more differentiated-like state. These effects support the CMS-2 antimetastatic activity and place this fraction in the category of anticancer agent.
Collapse
|
7
|
Kądziołka B, Dębski KJ, Bieganowski P, Leśniak W, Filipek A. Transcriptional regulation of CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression pattern in colorectal cancer HCT116 cells. IUBMB Life 2017; 70:50-59. [PMID: 29197151 DOI: 10.1002/iub.1698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022]
Abstract
The CacyBP/SIP protein is expressed at a particularly high level in brain, spleen, and various tumors. In this work, we have studied transcriptional regulation of the CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression in colorectal cancer HCT116 cells. We have shown that E2F1, EGR1, and CREB transcription factors bind to the CacyBP/SIP gene promoter and stimulate transcription of CacyBP/SIP gene. The role of CREB was further confirmed by the observation that forskolin, a strong activator of CREB phosphorylation/activity, increased CacyBP/SIP gene promoter activity. Moreover, we have shown that CREB dominant negative mutants, CREB133 and KCREB, inhibits CacyBP/SIP promoter activity. To check the biological significance of increased CacyBP/SIP expression/level we have applied RNA microarray analysis and have found that upregulation of CacyBP/SIP entails changes in mRNA level of many genes involved, among others, in immune processes. © 2017 IUBMB Life, 70(1):50-59, 2018.
Collapse
Affiliation(s)
- Beata Kądziołka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J Dębski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Filipek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Regulation of CacyBP/SIP expression by NFAT1 transcription factor. Immunobiology 2017; 222:872-877. [PMID: 28526484 DOI: 10.1016/j.imbio.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/09/2017] [Indexed: 01/11/2023]
Abstract
In this work we have shown that NFAT1 transcription factor is involved in the regulation of CacyBP/SIP expression. We have demonstrated, by applying Western blot, RT-PCR and luciferase assay that the level of CacyBP/SIP increases upon NFAT1 overexpression. Moreover, inhibition or stimulation of NFAT transcriptional activity exerts a corresponding effect on the expression of CacyBP/SIP gene. Furthermore, EMSA and chromatin immunoprecipitation (ChIP) assay have shown that NFAT1 binds to its specific binding sites within the CacyBP/SIP gene. In conclusion, our data have shown for the first time the regulation of CacyBP/SIP gene expression by NFAT1. Since NFAT transcription factors are involved in processes related to immune response, these results indicate potential involvement of CacyBP/SIP in the immune system.
Collapse
|
9
|
Topolska-Woś AM, Rosińska S, Filipek A. MAP kinase p38 is a novel target of CacyBP/SIP phosphatase. Amino Acids 2017; 49:1069-1076. [PMID: 28283909 PMCID: PMC5437258 DOI: 10.1007/s00726-017-2404-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 11/04/2022]
Abstract
Mitogen-activated protein (MAP) kinases are important players in cellular signaling pathways. Recently, it has been shown that CacyBP/SIP serves as a phosphatase for one of the MAP kinases, ERK1/2. Through dephosphorylation of this kinase CacyBP/SIP modulates the transcriptional activity of Elk-1 and the activity of the CREB-BDNF pathway. In this work, using NB2a cell lysate and recombinant proteins, we show that CacyBP/SIP binds and dephosphorylates another member of the MAP kinase family, p38. Analysis of recombinant full-length CacyBP/SIP and its three major domains, N-terminal, middle CS and C-terminal SGS, indicates that the middle CS domain is responsible for p38 dephosphorylation. Moreover, we show that CacyBP/SIP might be implicated in response to oxidative stress. Dephosphorylation of phospho-p38 by CacyBP/SIP in NB2a cells treated with hydrogen peroxide is much more effective than in control ones. In conclusion, involvement of CacyBP/SIP in the regulation of p38 kinase activity, in addition to that of ERK1/2, might point to the function of CacyBP/SIP in pro-survival and pro-apoptotic pathways.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Sara Rosińska
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Týcová I, Sulková SD, Štěpánková J, Krejčík Z, Merkerová MD, Stránecký V, Hrubá P, Girmanová E, Černoch M, Lipár K, Marada T, Povýšil C, Viklický O. Molecular patterns of diffuse and nodular parathyroid hyperplasia in long-term hemodialysis. Am J Physiol Endocrinol Metab 2016; 311:E720-E729. [PMID: 27600827 DOI: 10.1152/ajpendo.00517.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/21/2016] [Indexed: 01/08/2023]
Abstract
Secondary hyperparathyroidism is a well-known complication of end-stage renal disease (ESRD). Both nodular and diffuse parathyroid hyperplasia occur in ESRD patients. However, their distinct molecular mechanisms remain poorly understood. Parathyroid tissue obtained from ESRD patients who had undergone parathyroidectomy was used for Illumina transcriptome screening and subsequently for discriminatory gene analysis, pathway mapping, and gene annotation enrichment analysis. Results were further validated using quantitative RT-PCR on the independent larger cohort. Microarray screening proved homogeneity of gene transcripts in hemodialysis patients compared with the transplant cohort and primary hyperparathyroidism; therefore, further experiments were performed in hemodialysis patients only. Enrichment analysis conducted on 485 differentially expressed genes between nodular and diffuse parathyroid hyperplasia revealed highly significant differences in Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genomes database in ribosome structure (P = 3.70 × 10-18). Next, quantitative RT-PCR validation of the top differently expressed genes from microarray analysis proved higher expression of RAN guanine nucleotide release factor (RANGRF; P < 0.001), calcyclin-binding protein (CACYBP; P < 0.05), and exocyst complex component 8 (EXOC8; P < 0.05) and lower expression of peptidylprolyl cis/trans-isomerase and NIMA-interacting 1 (PIN1; P < 0.01) mRNA in nodular hyperplasia. Multivariate analysis revealed higher RANGRF and lower PIN1 expression along with parathyroid weight to be associated with nodular hyperplasia. In conclusion, our study suggests the RANGRF transcript, which controls RNA metabolism, to be likely involved in pathways associated with the switch to nodular parathyroid growth. This transcript, along with PIN1 transcript, which influences parathyroid hormone secretion, may represent new therapeutical targets to cure secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Irena Týcová
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sylvie Dusilová Sulková
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Hemodialysis Centre, University Hospital, Hradec Králové, Czech Republic
| | - Jitka Štěpánková
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeněk Krejčík
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Viktor Stránecký
- Institute of Inherited Metabolic Disorders, Charles University and 1st School of Medicine and General University Hospital, Prague, Czech Republic
| | - Petra Hrubá
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Girmanová
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marek Černoch
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Květoslav Lipár
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomáš Marada
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ctibor Povýšil
- Department of Pathology, Charles University and 1st School of Medicine and General University Hospital, Prague, Czech Republic; and
| | - Ondřej Viklický
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic;
| |
Collapse
|