1
|
Gorvel L, Panouillot M, Rouvière MS, Billon E, Fattori S, Sonongbua J, Boucherit N, Ben Amara A, Quilichini O, Granjeaud S, Degos C, Nunès JA, Carcopino X, Lambaudie E, Chrétien AS, Sabatier R, Dieu-Nosjean MC, Olive D. Tertiary Lymphoid Structures Are Associated with Enhanced Macrophage Activation and Immune Checkpoint Expression and Predict Outcome in Cervical Cancer. Cancer Immunol Res 2025; 13:712-728. [PMID: 39888676 DOI: 10.1158/2326-6066.cir-24-0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/02/2025]
Abstract
Cervical tumors are usually treated using surgery, chemotherapy, and radiotherapy and would benefit from immunotherapies. However, the immune microenvironment in cervical cancer remains poorly described. Tertiary lymphoid structures (TLS) were recently described as markers for better immunotherapy response and overall better prognosis in patients with cancer. We evaluated the cervical tumor immune microenvironment, specifically focusing on TLS, using combined high-throughput phenotyping, soluble factor concentration dosage in the tumor microenvironment, and spatial interaction analyses. We found that TLS presence was associated with a more inflammatory soluble microenvironment, with the presence of B cells as well as more activated macrophages and dendritic cells (DC). Furthermore, this myeloid cell activation was associated with the expression of immune checkpoints, such as PD-L1 and CD40, and the proximity of activated conventional type 2 DCs to CD8+ T cells, indicating better immune interactions and tumor control. Finally, we associated TLS presence, greater B-cell density, and activated DC density with improved progression-free survival, substantiating TLS presence as a potential prognostic marker. Our results provide evidence that TLS presence denotes cell activation and immunotherapy target expression.
Collapse
Affiliation(s)
- Laurent Gorvel
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Marylou Panouillot
- UMRS1135 Sorbonne University, INSERM U1135, Centre of Immunology and Microbial Infections (Cimi), Immune Microenvironment and Immunotherapy Team, Paris, France
| | - Marie-Sarah Rouvière
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Emilien Billon
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Stéphane Fattori
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Jumaporn Sonongbua
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Nicolas Boucherit
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Amira Ben Amara
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Olivia Quilichini
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- CRCM Integrative Bioinformatics Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Clara Degos
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Jacques A Nunès
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Xavier Carcopino
- Department of Obstetrics and Gynecology, Hôpital Nord, APHM, Aix-Marseille University (AMU), CNRS, IRD, IMBE UMR 7263, 13397, Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Anne-Sophie Chrétien
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| | - Renaud Sabatier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne University, INSERM U1135, Centre of Immunology and Microbial Infections (Cimi), Immune Microenvironment and Immunotherapy Team, Paris, France
| | - Daniel Olive
- Immunity and Cancer Team, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
- Immunomonitoring Platform, Cancer Research Center of Marseille, CRCM, INSERM U1068, CNRS UMR7258, Aix-Marseille University U105, Marseille, France
| |
Collapse
|
2
|
Hao F, Yan Z, Shen L, Hui W, Ling Q, Xiaoyu Y, Hua J. Reverse-engineering the FLT3-PI3K/AKT axis to enhance TILs function and improve prognosis in ovarian and cervical cancers. J Ovarian Res 2025; 18:14. [PMID: 39863894 PMCID: PMC11762100 DOI: 10.1186/s13048-025-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive. METHODS We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators. Seurat and Harmony were employed for batch correction and dimensionality reduction. FLT3 expression was mapped with spatial data from 10 × Genomics. RESULTS FLT3, identified as a regulator through the PI3K/AKT pathway, showed positive correlations with T cells, NK cells, and B cells. FLT3-high regions exhibited increased immune infiltration, particularly in CC, enhancing survival outcomes. CONCLUSION This study provides the first spatially resolved evidence of FLT3's immune-modulatory role in OC and CC, positioning it as a promising immunotherapeutic target. FLT3-targeted strategies may offer new options for patients resistant to conventional therapies.
Collapse
Affiliation(s)
- Feng Hao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Zhang Yan
- Department of Cervical, Xiamen Women and Children's Healthcare Hospital, Women's and Children's Hospital of Xiamen University, #10 Zhenhai Road, Xiamen, 361000, People's Republic of China
| | - Luo Shen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Wang Hui
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Qiu Ling
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Yang Xiaoyu
- HK International Regenerative Centre, MIRAMAR TWR 132 NATHAN RD Tsim Sha Tsui, Hong Kong Special Administrative Region, China.
| | - Jiang Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
3
|
Echevarria-Lima J, Moles R. Monocyte and Macrophage Functions in Oncogenic Viral Infections. Viruses 2024; 16:1612. [PMID: 39459945 PMCID: PMC11512331 DOI: 10.3390/v16101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Monocytes and macrophages are part of innate immunity and constitute the first line of defense against pathogens. Bone marrow-derived monocytes circulate in the bloodstream for one to three days and then typically migrate into tissues, where they differentiate into macrophages. Circulatory monocytes represent 5% of the nucleated cells in normal adult blood. Following differentiation, macrophages are distributed into various tissues and organs to take residence and maintain body homeostasis. Emerging evidence has highlighted the critical role of monocytes/macrophages in oncogenic viral infections, mainly their crucial functions in viral persistence and disease progression. These findings open opportunities to target innate immunity in the context of oncogenic viruses and to explore their potential as immunotherapies.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Ramona Moles
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Gorvel L, Olive D. Tumor associated macrophage in HPV + tumors: Between immunosuppression and inflammation. Semin Immunol 2023; 65:101671. [PMID: 36459926 DOI: 10.1016/j.smim.2022.101671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ-Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.
Collapse
Affiliation(s)
- Laurent Gorvel
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France.
| | - Daniel Olive
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France
| |
Collapse
|
5
|
Yang W, Zhang W, Wang X, Tan L, Li H, Wu J, Wu Q, Sun W, Chen J, Yin Y. HCA587 Protein Vaccine Induces Specific Antitumor Immunity Mediated by CD4 + T-cells Expressing Granzyme B in a Mouse Model of Melanoma. Anticancer Agents Med Chem 2021; 21:738-746. [PMID: 32723258 DOI: 10.2174/1871520620666200728131951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antigen HCA587 (also known as MAGE-C2), which is considered a cancer-testis antigen, exhibits upregulated expression in a wide range of malignant tumors with unique immunological properties, and may thus serve as a promising target for tumor immunotherapy. OBJECTIVE The study aimed to explore the antitumor effect of the HCA587 protein vaccine and the response of humoral and cell-mediated immunity. METHODS The HCA587 protein vaccine was formulated with adjuvants CpG and ISCOM. B16 melanoma cells were subcutaneously inoculated to C57BL/6 mice, followed by treatment with HCA587 protein vaccine subcutaneously. Mouse survival was monitored daily, and tumor volume was measured every 2 to 3 days. The tumor sizes, survival time and immune cells in tumor tissues were detected. And the vital immune cell subset and effector molecules were explored. RESULTS After treatment with HCA587 protein vaccine, the vaccination elicited significant immune responses, which delayed tumor growth and improved animal survival. The vaccination increased the proportion of CD4+ T cells expressing IFN-γ and granzyme B in tumor tissues. The depletion of CD4+T cells resulted in an almost complete abrogation of the antitumor effect of the vaccination, suggesting that the antitumor efficacy was mediated by CD4+ T cells. In addition, knockout of IFN-γ resulted in a decrease in granzyme B levels, which were secreted by CD4+ T cells, and the antitumor effect was also significantly attenuated. CONCLUSION The HCA587 protein vaccine may increase the levels of granzyme B expressed by CD4+ T cells, and this increase is dependent on IFN-γ, and the vaccine resulted in a specific tumor immune response and subsequent eradication of the tumor.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Weiheng Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Liming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Hua Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Jiemin Wu
- Department of Clinical Laboratory, Wuyuan County People's Hospital, Wuyuan 333200, Jiangxi Province, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
6
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Petrini CG, Bastos LB, Duarte G, Dos Santos Melli PP, Alves-Filho JC, Quintana SM. Downregulation of IL-2 and IL-23 in Cervical Biopsies of Cervical Intraepithelial Lesions: A Cross-Sectional Study. Acta Cytol 2020; 64:442-451. [PMID: 32599588 DOI: 10.1159/000508015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Persistent infection with high-risk human papillomavirus (HPV) types is associated with high-grade intraepithelial lesions (HSILs) and invasive cervical cancer. The host immune response plays a key role in whether HPV clears or persists. Most studies on local immune response to HPV collect cervical mucus in order to quantify secreted cytokines; however, cells located inside the tissue can release different cytokines associated with HPV infection. OBJECTIVE This study compared the cytokine levels in cervical biopsy specimens of women with abnormal colposcopic findings according to the histopathological results: low-grade intraepithelial lesion (LSIL), HSIL, and no intraepithelial lesion (NSIL). METHODS A cross-sectional study enrolling 141 cervical biopsy specimens examined the cytokine profile for interleukin (IL-) 2, IL-4, IL-10, IL-12, IL-17, and IL-23 and interferon-γ, using the Luminex assay/ELISA. Differences in cytokine levels among the cervical lesion groups were assessed using the Kruskal-Wallis test. RESULTS The 141 specimens included 90 HSILs, 22 LSILs, and 29 NSILs. IL-2 levels were significantly higher in NSIL samples than in LSIL or in HSIL samples (p = 0.0001) and IL-23 levels were significantly higher in NSIL than in HSIL samples (p = 0.003). CONCLUSIONS Our study shows that in samples from the lesion site point, 2 important pro-inflammatory cytokines, IL-2 and IL-23, are downregulated in HPV lesions.
Collapse
Affiliation(s)
- Caetano Galvão Petrini
- Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Larissa Brito Bastos
- Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Geraldo Duarte
- Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - José Carlos Alves-Filho
- Pharmacology Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Silvana Maria Quintana
- Gynecology and Obstetrics Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
8
|
Liu Y, Li L, Li Y, Zhao X. Research Progress on Tumor-Associated Macrophages and Inflammation in Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6842963. [PMID: 32083131 PMCID: PMC7011341 DOI: 10.1155/2020/6842963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Cervical cancer is the most common gynecological tumor worldwide. Persistent infection of high-risk HPV-induced smouldering inflammation is considered to be an important risk factor for cervical cancer. The tumor microenvironment (TME) plays an important role in the progress of the tumor occurrence, development, and prognosis of cervical cancer. Macrophages are the main contributor to the TME, which is called tumor-associated macrophages (TAMs). During the inflammatory response, the phenotype and function of TAMs are constantly changing, which are involved in different regulatory networks. The phenotype of TAMs is related to the metabolism and secretory factors release, which facilitate the angiogenesis and lymphatic duct formation during cervical cancer metastasis, thus affecting the prognosis of cervical cancer. This review intends to discuss the recent research progress on the relationship between TAMs and cervical cancer, which is helpful to elucidate the mechanism of TAMs in cervical cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Zunyi Medical University Affiliated Hospital of Obstetrics and Gynecology, Zunyi 563003, China
| | - Li Li
- Zunyi Medical University Affiliated Hospital of Obstetrics and Gynecology, Zunyi 563003, China
| | - Ying Li
- Zunyi Medical University Affiliated Hospital of Obstetrics and Gynecology, Zunyi 563003, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
The Formation and Therapeutic Update of Tumor-Associated Macrophages in Cervical Cancer. Int J Mol Sci 2019; 20:ijms20133310. [PMID: 31284453 PMCID: PMC6651300 DOI: 10.3390/ijms20133310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this review, we will discuss the origins and categories of macrophages, the molecules responsible for forming and reeducating TAMs in cervical cancer (CC), the biomarkers of macrophages and the therapy development targeting TAMs in CC research.
Collapse
|
10
|
Silva JR, Sales NS, Silva MO, Aps LRMM, Moreno ACR, Rodrigues EG, Ferreira LCS, Diniz MO. Expression of a soluble IL-10 receptor enhances the therapeutic effects of a papillomavirus-associated antitumor vaccine in a murine model. Cancer Immunol Immunother 2019; 68:753-763. [PMID: 30806747 PMCID: PMC11028134 DOI: 10.1007/s00262-018-02297-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
Abstract
The presence of IL-10, produced either by tumor cells or immunosuppressive cells, is frequently associated with a poor prognosis for cancer progression. It may also negatively impact anticancer treatments, such as immunotherapies, that otherwise would promote the activation of cytotoxic T cells capable of detecting and destroying malignant cells. In the present study, we evaluated a new adjuvant approach for anticancer immunotherapy using a plasmid vector encoding a soluble form of the IL-10 receptor (pIL-10R). pIL-10R was coadministered to mice with a DNA vaccine encoding the type 16 human papillomavirus (HPV-16) E7 oncoprotein genetically fused with glycoprotein D of herpes simplex virus (HSV) (pgDE7h). Immunization regimens based on the coadministration of pIL-10R and pgDE7h enhanced the antitumor immunity elicited in mice injected with TC-1 cells, which express HPV-16 oncoproteins. The administration of the DNA vaccines by in vivo electroporation further enhanced the anticancer effects of the vaccines, leading to the activation of tumor-infiltrating polyfunctional E7-specific cytotoxic CD8+ T cells and control of the expansion of immunosuppressive cells. In addition, the combination of immunotherapy and pIL-10R allowed the control of tumors in more advanced growth stages that otherwise would not be treatable by the pgDE7h vaccine. In conclusion, the proposed treatment involving the expression of IL-10R enhanced the antitumor protective immunity induced by pgDE7h administration and may contribute to the development of more efficient clinical interventions against HPV-induced tumors.
Collapse
Affiliation(s)
- Jamile R Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Natiely S Sales
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Mariângela O Silva
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Luana R M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Ana C R Moreno
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Elaine G Rodrigues
- Tumor Immunobiology Laboratory, Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Luís C S Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil.
| | - Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
- Division of Infection and Immunity, University College London, 5 University St, Bloomsbury, London, WC1E 6JF, UK
| |
Collapse
|
11
|
Li N, Jilisihan B, Wang W, Tang Y, Keyoumu S. Soluble LAG3 acts as a potential prognostic marker of gastric cancer and its positive correlation with CD8+T cell frequency and secretion of IL-12 and INF-γ in peripheral blood. Cancer Biomark 2019; 23:341-351. [PMID: 30223387 DOI: 10.3233/cbm-181278] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is the second most common lethal cancer worldwide and lymphocyte-activation gene 3 (LAG3) as a therapeutic target for cancers has been investigated. Herein, our study is to clarify the value of peripheral blood (PB) soluble LAG-3 (sLAG3) in GC. METHODS Peripheral serum samples of GC patients and healthy people were collected for the measurement of serum levels of sLAG3, carcinoembryonic antigen (CEA), IL-12 and IFN-γ. Additionally, ROC and Kaplan-Meier curves were adopted to identify the diagnostic and prognostic values of sLAG-3 in patients with GC. Then, GC-bearing mice were treated with recombinant sLAG3. The tumor volume was measured, and CD8+T cell frequency was detected in PB and tumor-ininfiltrating area. Additionally, the expression of IL-12 and IFN-γ in T cells was assayed and the overall survival of mice was analyzed. RESULTS sLAG3 in PB was poorly expressed and its expression was positively correlated with IL-12 and IFN-γ expression in GC patients. sLAG3 was proved to have a higher diagnostic value than CEA in GC. Moreover, high sLAG-3 expression is found in relation to a better prognosis in GC. The in vivo experiments indicated that sLAG-3 might inhibit the tumor growth, and promote the secretion of CD8+T cells, IL-12 and IFN-γ. Furthermore, sLAG-3 was able to prolong overall survival and increase survival rate of GC-bearing mice. CONCLUSION Based on these findings, we conclude that sLAG3 positively regulates CD8+T cells, IL-12 and IFN-γ, and function as a prognostic marker for GC, which might be a potential target in the treatment of GC.
Collapse
|
12
|
Tuong ZK, Noske K, Kuo P, Bashaw AA, Teoh SM, Frazer IH. Murine HPV16 E7-expressing transgenic skin effectively emulates the cellular and molecular features of human high-grade squamous intraepithelial lesions. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:6-20. [PMID: 29807614 PMCID: PMC5886957 DOI: 10.1016/j.pvr.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/26/2023]
Abstract
Currently available vaccines prevent HPV infection and development of HPV-associated malignancies, but do not cure existing HPV infections and dysplastic lesions. Persistence of infection(s) in immunocompetent patients may reflect induction of local immunosuppressive mechanisms by HPV, providing a target for therapeutic intervention. We have proposed that a mouse, expressing HPV16 E7 oncoprotein under a Keratin 14 promoter (K14E7 mice), and which develops epithelial hyperplasia, may assist with understanding local immune suppression mechanisms that support persistence of HPV oncogene-induced epithelial hyperplasia. K14E7 skin grafts recruit immune cells from immunocompetent hosts, but consistently fail to be rejected. Here, we review the literature on HPV-associated local immunoregulation, and compare the findings with published observations on the K14E7 transgenic murine model, including comparison of the transcriptome of human HPV-infected pre-malignancies with that of murine K14E7 transgenic skin. We argue from the similarity of i) the literature findings and ii) the transcriptome profiles that murine K14E7 transgenic skin recapitulates the cellular and secreted protein profiles of high-grade HPV-associated lesions in human subjects. We propose that the K14E7 mouse may be an appropriate model to further study the immunoregulatory effects of HPV E7 expression, and can facilitate development and testing of therapeutic vaccines.
Collapse
Affiliation(s)
- Z K Tuong
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - K Noske
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - P Kuo
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - A A Bashaw
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - S M Teoh
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - I H Frazer
- The University of Queensland, Faculty of Medicine, Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|