1
|
Ileșan RR, Ștefănigă SA, Fleșar R, Beyer M, Ginghină E, Peștean AS, Hirsch MC, Perju-Dumbravă L, Faragó P. In Silico Decoding of Parkinson's: Speech & Writing Analysis. J Clin Med 2024; 13:5573. [PMID: 39337061 PMCID: PMC11433360 DOI: 10.3390/jcm13185573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Parkinson's disease (PD) has transitioned from a rare condition in 1817 to the fastest-growing neurological disorder globally. The significant increase in cases from 2.5 million in 1990 to 6.1 million in 2016, coupled with predictions of a further doubling by 2040, underscores an impending healthcare challenge. This escalation aligns with global demographic shifts, including rising life expectancy and a growing global population. The economic impact, notably in the U.S., reached $51.9 billion in 2017, with projections suggesting a 46% increase by 2037, emphasizing the substantial socio-economic implications for both patients and caregivers. Coupled with a worldwide demand for health workers that is expected to rise to 80 million by 2030, we have fertile ground for a pandemic. Methods: Our transdisciplinary research focused on early PD detection through running speech and continuous handwriting analysis, incorporating medical, biomedical engineering, AI, and linguistic expertise. The cohort comprised 30 participants, including 20 PD patients at stages 1-4 on the Hoehn and Yahr scale and 10 healthy controls. We employed advanced AI techniques to analyze correlation plots generated from speech and handwriting features, aiming to identify prodromal PD biomarkers. Results: The study revealed distinct speech and handwriting patterns in PD patients compared to controls. Our ParkinsonNet model demonstrated high predictive accuracy, with F1 scores of 95.74% for speech and 96.72% for handwriting analyses. These findings highlight the potential of speech and handwriting as effective early biomarkers for PD. Conclusions: The integration of AI as a decision support system in analyzing speech and handwriting presents a promising approach for early PD detection. This methodology not only offers a novel diagnostic tool but also contributes to the broader understanding of PD's early manifestations. Further research is required to validate these findings in larger, diverse cohorts and to integrate these tools into clinical practice for timely PD pre-diagnosis and management.
Collapse
Affiliation(s)
- Robert Radu Ileșan
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
- Department of Oral and Maxillofacial Surgery, Lucerne Cantonal Hospital, Spitalstrasse, 6000 Lucerne, Switzerland
| | - Sebastian-Aurelian Ștefănigă
- Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania; (S.-A.Ș.); (R.F.)
| | - Radu Fleșar
- Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania; (S.-A.Ș.); (R.F.)
| | - Michel Beyer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Elena Ginghină
- Department of Anglo-American and German Studies, Faculty of Letters and Arts, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| | - Ana Sorina Peștean
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
| | - Martin C. Hirsch
- Institute for Artificial Intelligence in Medicine, Faculty of Medicine, University Hospital Giessen and Marburg, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany;
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania (L.P.-D.)
| | - Paul Faragó
- Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Abumalloh RA, Nilashi M, Samad S, Ahmadi H, Alghamdi A, Alrizq M, Alyami S. Parkinson's disease diagnosis using deep learning: A bibliometric analysis and literature review. Ageing Res Rev 2024; 96:102285. [PMID: 38554785 DOI: 10.1016/j.arr.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Deep Learning (DL) has gained substantial attention in PD diagnosis research, with an increase in the number of published papers in this discipline. PD detection using DL has presented more promising outcomes as compared with common machine learning approaches. This article aims to conduct a bibliometric analysis and a literature review focusing on the prominent developments taking place in this area. To achieve the target of the study, we retrieved and analyzed the available research papers in the Scopus database. Following that, we conducted a bibliometric analysis to inspect the structure of keywords, authors, and countries in the surveyed studies by providing visual representations of the bibliometric data using VOSviewer software. The study also provides an in-depth review of the literature focusing on different indicators of PD, deployed approaches, and performance metrics. The outcomes indicate the firm development of PD diagnosis using DL approaches over time and a large diversity of studies worldwide. Additionally, the literature review presented a research gap in DL approaches related to incremental learning, particularly in relation to big data analysis.
Collapse
Affiliation(s)
- Rabab Ali Abumalloh
- Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar
| | - Mehrbakhsh Nilashi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Computer Science, Duy Tan University, Da Nang, Vietnam; UCSI Graduate Business School, UCSI University, No. 1 Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; Centre for Global Sustainability Studies (CGSS), Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Sarminah Samad
- Faculty of Business, UNITAR International University, Tierra Crest, Jalan SS6/3, Petaling Jaya, Selangor 47301, Malaysia
| | - Hossein Ahmadi
- Centre for Health Technology, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Abdullah Alghamdi
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia; AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Mesfer Alrizq
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia; AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Sultan Alyami
- AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia; Computer Science Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
3
|
Idrisoglu A, Dallora AL, Anderberg P, Berglund JS. Applied Machine Learning Techniques to Diagnose Voice-Affecting Conditions and Disorders: Systematic Literature Review. J Med Internet Res 2023; 25:e46105. [PMID: 37467031 PMCID: PMC10398366 DOI: 10.2196/46105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Normal voice production depends on the synchronized cooperation of multiple physiological systems, which makes the voice sensitive to changes. Any systematic, neurological, and aerodigestive distortion is prone to affect voice production through reduced cognitive, pulmonary, and muscular functionality. This sensitivity inspired using voice as a biomarker to examine disorders that affect the voice. Technological improvements and emerging machine learning (ML) technologies have enabled possibilities of extracting digital vocal features from the voice for automated diagnosis and monitoring systems. OBJECTIVE This study aims to summarize a comprehensive view of research on voice-affecting disorders that uses ML techniques for diagnosis and monitoring through voice samples where systematic conditions, nonlaryngeal aerodigestive disorders, and neurological disorders are specifically of interest. METHODS This systematic literature review (SLR) investigated the state of the art of voice-based diagnostic and monitoring systems with ML technologies, targeting voice-affecting disorders without direct relation to the voice box from the point of view of applied health technology. Through a comprehensive search string, studies published from 2012 to 2022 from the databases Scopus, PubMed, and Web of Science were scanned and collected for assessment. To minimize bias, retrieval of the relevant references in other studies in the field was ensured, and 2 authors assessed the collected studies. Low-quality studies were removed through a quality assessment and relevant data were extracted through summary tables for analysis. The articles were checked for similarities between author groups to prevent cumulative redundancy bias during the screening process, where only 1 article was included from the same author group. RESULTS In the analysis of the 145 included studies, support vector machines were the most utilized ML technique (51/145, 35.2%), with the most studied disease being Parkinson disease (PD; reported in 87/145, 60%, studies). After 2017, 16 additional voice-affecting disorders were examined, in contrast to the 3 investigated previously. Furthermore, an upsurge in the use of artificial neural network-based architectures was observed after 2017. Almost half of the included studies were published in last 2 years (2021 and 2022). A broad interest from many countries was observed. Notably, nearly one-half (n=75) of the studies relied on 10 distinct data sets, and 11/145 (7.6%) used demographic data as an input for ML models. CONCLUSIONS This SLR revealed considerable interest across multiple countries in using ML techniques for diagnosing and monitoring voice-affecting disorders, with PD being the most studied disorder. However, the review identified several gaps, including limited and unbalanced data set usage in studies, and a focus on diagnostic test rather than disorder-specific monitoring. Despite the limitations of being constrained by only peer-reviewed publications written in English, the SLR provides valuable insights into the current state of research on ML-based voice-affecting disorder diagnosis and monitoring and highlighting areas to address in future research.
Collapse
Affiliation(s)
- Alper Idrisoglu
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
4
|
Scimeca S, Amato F, Olmo G, Asci F, Suppa A, Costantini G, Saggio G. Robust and language-independent acoustic features in Parkinson's disease. Front Neurol 2023; 14:1198058. [PMID: 37384279 PMCID: PMC10294689 DOI: 10.3389/fneur.2023.1198058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The analysis of vocal samples from patients with Parkinson's disease (PDP) can be relevant in supporting early diagnosis and disease monitoring. Intriguingly, speech analysis embeds several complexities influenced by speaker characteristics (e.g., gender and language) and recording conditions (e.g., professional microphones or smartphones, supervised, or non-supervised data collection). Moreover, the set of vocal tasks performed, such as sustained phonation, reading text, or monologue, strongly affects the speech dimension investigated, the feature extracted, and, as a consequence, the performance of the overall algorithm. Methods We employed six datasets, including a cohort of 176 Healthy Control (HC) participants and 178 PDP from different nationalities (i.e., Italian, Spanish, Czech), recorded in variable scenarios through various devices (i.e., professional microphones and smartphones), and performing several speech exercises (i.e., vowel phonation, sentence repetition). Aiming to identify the effectiveness of different vocal tasks and the trustworthiness of features independent of external co-factors such as language, gender, and data collection modality, we performed several intra- and inter-corpora statistical analyses. In addition, we compared the performance of different feature selection and classification models to evaluate the most robust and performing pipeline. Results According to our results, the combined use of sustained phonation and sentence repetition should be preferred over a single exercise. As for the set of features, the Mel Frequency Cepstral Coefficients demonstrated to be among the most effective parameters in discriminating between HC and PDP, also in the presence of heterogeneous languages and acquisition techniques. Conclusion Even though preliminary, the results of this work can be exploited to define a speech protocol that can effectively capture vocal alterations while minimizing the effort required to the patient. Moreover, the statistical analysis identified a set of features minimally dependent on gender, language, and recording modalities. This discloses the feasibility of extensive cross-corpora tests to develop robust and reliable tools for disease monitoring and staging and PDP follow-up.
Collapse
Affiliation(s)
- Sabrina Scimeca
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Federica Amato
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Gabriella Olmo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Francesco Asci
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giovanni Costantini
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Saggio
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Khaskhoussy R, Ayed YB. Improving Parkinson’s disease recognition through voice analysis using deep learning. Pattern Recognit Lett 2023. [DOI: 10.1016/j.patrec.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|