1
|
Ionică LN, Buriman DG, Lința AV, Șoșdean R, Lascu A, Streian CG, Feier HB, Petrescu L, Mozoș IM, Sturza A, Muntean DM. Empagliflozin and dapagliflozin decreased atrial monoamine oxidase expression and alleviated oxidative stress in overweight non-diabetic cardiac patients. Mol Cell Biochem 2025; 480:1645-1655. [PMID: 39042348 PMCID: PMC11842473 DOI: 10.1007/s11010-024-05076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The sodium-glucose-cotransporter 2 inhibitors (SGLT2i) are the blockbuster antidiabetic drugs that exert cardiovascular protection via pleiotropic effects. We have previously demonstrated that empagliflozin decreased monoamine oxidase (MAO) expression and oxidative stress in human mammary arteries. The present study performed in overweight, non-diabetic cardiac patients was aimed to assess whether the two widely prescribed SGLT2i decrease atrial MAO expression and alleviate oxidative stress elicited by exposure to angiotensin 2 (ANG2) and high glucose (GLUC). Right atrial appendages isolated during cardiac surgery were incubated ex vivo with either empagliflozin or dapagliflozin (1, 10 µm, 12 h) in the presence or absence of ANG2 (100 nm) and GLUC (400 mg/dL) and used for the evaluation of MAO-A and MAO-B expression and ROS production. Stimulation with ANG2 and GLUC increased atrial expression of both MAOs and oxidative stress; the effects were significantly decreased by the SGLT2i. Atrial oxidative stress positively correlated with the echocardiographic size of heart chambers and negatively with the left ventricular ejection fraction. In overweight patients, MAO contributes to cardiac oxidative stress in basal conditions and those that mimicked the renin-angiotensin system activation and hyperglycemia and can be targeted with empagliflozin and dapagliflozin, as novel off-target class effect of the SGLT2i.
Collapse
Affiliation(s)
- Loredana N Ionică
- Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department V Internal Medicine - 1st Clinic of Medical Semiotics, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Darius G Buriman
- Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Adina V Lința
- Doctoral School Medicine-Pharmacy, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Raluca Șoșdean
- Department VI Cardiology, Clinic of Cardiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Ana Lascu
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Caius G Streian
- Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department VI Cardiology - Clinic of Cardiovascular Surgery, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Horea B Feier
- Institute of Cardiovascular Diseases Timișoara, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department VI Cardiology - Clinic of Cardiovascular Surgery, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Ioana M Mozoș
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania.
| | - Danina M Muntean
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
- Department III Functional Sciences - Chair of Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy From Timișoara, Eftimie Murgu Sq. No. 2, 300041, Timișoara, Romania
| |
Collapse
|
2
|
Al-Tarawneh LM, Al-Adwan AJ, Al-Shaikhly FA, Almomani MM, Oduibat RT. Dapagliflozin in Heart Failure and Acute Myocardial Infarction: A Systematic Review of the Association in Diabetic Patients. Cureus 2024; 16:e65914. [PMID: 39221294 PMCID: PMC11364978 DOI: 10.7759/cureus.65914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review explores the impact of dapagliflozin on heart failure (HF) and acute myocardial infarction (MI) in patients with type 2 diabetes mellitus. By analyzing recent studies, including both randomized controlled trials (RCTs) and retrospective analyses, this review provides insights into the cardiovascular effects of this sodium-glucose cotransporter 2 (SGLT2) inhibitor. The findings consistently demonstrate the benefits of dapagliflozin in reducing HF-related hospitalizations and improving outcomes for patients with established HF. These positive effects appear to extend beyond glycemic control, suggesting multiple mechanisms of action. The impact of dapagliflozin on acute MI outcomes is less clear, with mixed results across studies. Importantly, dapagliflozin shows promise in improving the quality of life of patients and is generally well-tolerated. The review suggests that dapagliflozin may play a significant role in managing cardiovascular risk in diabetic patients, particularly those with or at risk of HF. While the evidence is encouraging, the review also highlights areas requiring further investigation. These include determining the patient subgroups most likely to benefit from dapagliflozin, elucidating the precise mechanisms underlying its cardioprotective effects, and carrying out long-term outcome studies.
Collapse
Affiliation(s)
| | | | | | | | - Rahaf T Oduibat
- Medicine and Surgery, Jordan University Hospital, Amman, JOR
| |
Collapse
|
3
|
Scheen AJ. Cardiovascular protection significantly depends on HbA1c improvement with GLP-1RAs but not with SGLT2 is in type 2 diabetes: A narrative review. DIABETES & METABOLISM 2024; 50:101508. [PMID: 38158077 DOI: 10.1016/j.diabet.2023.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is), while developed as antihyperglycaemic medications for the treatment of type 2 diabetes, have proven to reduce major cardiovascular adverse events (MACEs) and hospitalization for heart failure (especially for SGLT2is) in dedicated cardiovascular outcome trials. The contribution of the glucose-lowering effect in the cardiovascular protection is uncertain and may differ between the two drug classes. METHODS This narrative review compares the relative effects of glycated hemoglobin (HbA1c) reduction on the cardiovascular protection provided by GLP-1RAs and SGLT2is in placebo-controlled cardiovascular outcome trials by using the results of either post-hoc mediation analyses or meta-regression studies. RESULTS Both mediation and meta-regression analyses suggest that the lower cardiovascular risk with GLP-1RAs partially but substantially tracks with their glucose-lowering effect, especially when considering the reduction in nonfatal strokes. In contrast, similar analyses fail to demonstrate any significant contribution of the glucose-lowering effect with SGLT2is, not only on MACEs but also on heart failure issues. CONCLUSION The contribution of improved glucose control in cardiovascular protection is limited, but is much greater for GLP-1RAs than for SGLT2is. Of note, such mediation or meta-regression analyses are exploratory and can only be viewed as hypothesis generating.
Collapse
Affiliation(s)
- André J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium.
| |
Collapse
|
4
|
Qi P, Zhai Q, Zhang X. RUNX1 facilitates heart failure progression through regulating TGF-β-induced cardiac remodeling. PeerJ 2023; 11:e16202. [PMID: 37927796 PMCID: PMC10624168 DOI: 10.7717/peerj.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023] Open
Abstract
Background Heart failure is caused by acute or chronic cardiovascular diseases with limited treatments and unclear pathogenesis. Therefore, it is urgent to explore new therapeutic targets and reveal new pathogenesis for heart failure. Methods We carried out heart failure animal model by transverse aortic arch constriction (TAC) in mice. The left ventricular internal diameter diastole (LVIDd), left ventricular internal diameter systole (LVIDs), and ejection fraction (EF) value were detected using ultrasound and myocardial fibrosis was evaluated by Masson stain assay. Cell apoptosis in myocardial tissues were detected by TUNEL immunofluorescence stain. Signal pathway analysis was performed by dual-luciferase reporter assay and western blot. Results Our results showed that inhibition of RUNX1 led to remission of cardiac enlargement induced by TAC in mice. Inhibition of RUNX1 also caused raise of EF and FS value under TAC-induced condition. Besides, RUNX1 inhibition mice showed decreased myocardial fibrosis area under TAC-induced condition. RUNX1 inhibition caused decrease of apoptotic cell rate in myocardial tissues under TAC. Interestingly, we found that RUNX1 could promote the activation of TGF-β/Smads in dual-luciferase reporter assay. Interpretation We illustrated that RUNX1 could be considered as a new regulator of myocardial remodeling by activating TGF-β/Smads signaling. Based on this, we concluded that RUNX1 may be developed as a new therapeutic target against heart failure in the future. In addition, this study also provide a new insight for the etiological study on heart failure.
Collapse
Affiliation(s)
- Peng Qi
- Department of Cardiac Surgery Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Qian Zhai
- Department of Cardiac Surgery Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xiquan Zhang
- Department of Cardiac Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Walter E, Arrigo M, Allerstorfer S, Marty P, Hülsmann M. Cost-effectiveness of NT-proBNP-supported screening of chronic heart failure in patients with or without type 2 diabetes in Austria and Switzerland. J Med Econ 2023; 26:1287-1300. [PMID: 37781889 DOI: 10.1080/13696998.2023.2264722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Heart failure (HF) is a clinical syndrome with a global burden. Signs and symptoms of HF are nonspecific and often shared with other conditions. The N-terminal prohormone of brain natriuretic peptide (NT-proBNP) serves as a useful biomarker for the diagnosis of HF not only in patients with acute symptoms but also in outpatients with an ambiguous clinical presentation. The aim of the analysis is to evaluate the cost-effectiveness of implementing NT-proBNP in the diagnostic algorithm in patients with/without type 2 diabetes mellitus (T2DM), compared with a diagnosis based primarily on clinical signs or symptoms from the perspective of the Austrian and Swiss healthcare system. METHODS A time-discrete Markov model was developed to simulate the effect/improvement (lifetime-costs, quality-adjusted life-years [QALYs], and life-years [LYs]) due to an NT-proBNP screening in undetected HF patients. Undetected HF patients are included in the model according to a distribution of New York Heart Association (NYHA) classes. The model considers disease progression by transition of NYHA classes. Undetected patients may remain undetected or be detected with the help of NT-proBNP or symptoms. Patients with known HF exhibit a slower disease progression. The probability of dying is influenced by the respective NYHA class. Direct costs (2021 € or CHF) were derived from published sources. QALYs, LYs, and costs were discounted (3% p.a.). RESULTS In the per-patient analysis (at age 60 over lifetime), the incremental cost-utility ratio (ICUR)/QALY of NT-proBNP vs. no screening was €3,042 for HF patients in Austria. Considering the total cohort of undetected HF patients (n = 9,377) with the corresponding age structure over a lifetime, the ICUR increases to €4,356. In Switzerland, the per-patient results show an ICUR of CHF 897. Considering the total cohort of undetected HF patients (n = 6,826) the ICUR amounts to CHF 4,513. If indirect costs are considered, NT-proBNP screening becomes the dominant strategy in both countries. CONCLUSION Overall, the analysis concludes that screening with NT-proBNP is a highly cost-effective or cost-saving diagnostic option for patients with HF, and a sensitivity analysis confirmed these findings.
Collapse
Affiliation(s)
- Evelyn Walter
- IPF Institute for Pharmaeconomic Research, Vienna, Austria
| | - Mattia Arrigo
- Department of Internal Medicine, Stadtspital Zürich Triemli, Zurich, Switzerland
| | | | - Petra Marty
- Roche Diagnostics (Switzerland) AG, Rotkreuz, Switzerland
| | - Martin Hülsmann
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|