1
|
Leber B, Stimmeder S, Briendl K, Weber J, Rohrhofer L, Aigelsreiter A, Niedrist T, Sucher R, Stiegler P. Equal performance of HTK-based and UW-based perfusion solutions in sub-normothermic liver machine perfusion. Sci Rep 2025; 15:7601. [PMID: 40038333 PMCID: PMC11880568 DOI: 10.1038/s41598-025-90799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Machine perfusion (MP) is gaining importance in liver transplantation, the only cure for many end-stage liver diseases. Varieties of different MP protocols are available. Currently, various MP protocols are available, differing not only in perfusion temperature but also in the specific perfusion solution required. We aimed to investigate the performance of an HTK-based perfusate during sub-normothermic MP (SNMP) of discarded human liver grafts compared to that of a UW-based solution. Twenty discarded livers (rejected for transplantation by all centers) were subjected to ex-vivo SNMP at 21°C with either HTK- or UW-based solution for 12 h. Perfusate and tissue samples collected before the start, after 6 h, and at the end of SNMP were analyzed for liver enzymes, along with mRNA expression of perfusate and tissue markers associated with organ damage. Hepatocellular viability was assessed by measuring bile production, monitoring pH stability, and analyzing histological changes in HE stained tissue sections. After propensity score matching 16 livers were analyzed. Overall, no differences between HTK- and UW-based solution were detected, except for an increased MLKL mRNA expression and impaired pH stability during SNMP with HTK-based perfusate. No other investigated parameters of cell injury, inflammation or hepatocellular viability supported this finding. Bile production was higher in the 6 HTK-perfused livers compared to the three UW-perfused livers that produced bile. Overall, these findings suggest that HTK performs comparably to a UW-based solution during 12 h of liver SNMP.
Collapse
Affiliation(s)
- Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| | - Sabrina Stimmeder
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Kathrin Briendl
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Jennifer Weber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Lisa Rohrhofer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Robert Sucher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Normothermic machine perfusion (NMP) is an emerging technology for liver preservation. Early clinical results demonstrate beneficial effects in reconditioning high-risk grafts. This review discusses the role of normothermic perfusion as a tool to assess graft viability and as a platform for graft intervention and modification. RECENT FINDINGS The potential benefits of NMP extend far beyond organ reconditioning. Recent pilot studies have identified clinically relevant viability criteria, which now require validation in large randomized control trials prior to implementation. Furthermore, preclinical studies demonstrate tremendous potential for NMP as a method to extend the preservation period, thus improving transplant logistics as well as serve as a platform for graft-targeted interventions to optimize the preservation period. SUMMARY NMP is a multifunctional tool with potential to transform liver preservation and the field of transplantation. Large clinical trials are necessary to optimize perfusion protocols, clarify indications for NMP therapy and justify use as the standard preservation modality.
Collapse
|
3
|
Mas VR. Ischemia/reperfusion, does temperature matter? Laboratory perspective. Liver Transpl 2015; 21 Suppl 1:S1-5. [PMID: 26334928 DOI: 10.1002/lt.24322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Valeria R Mas
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
4
|
Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: Rationale, current evidence and future directions. J Hepatol 2015; 63:265-75. [PMID: 25770660 DOI: 10.1016/j.jhep.2015.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs.
Collapse
Affiliation(s)
- Pepijn D Weeder
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne van Rijn
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Guarrera JV, Henry SD, Samstein B, Reznik E, Musat C, Lukose TI, Ratner LE, Brown RS, Kato T, Emond JC. Hypothermic machine preservation facilitates successful transplantation of "orphan" extended criteria donor livers. Am J Transplant 2015; 15:161-9. [PMID: 25521639 DOI: 10.1111/ajt.12958] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023]
Abstract
Hypothermic machine preservation (HMP) remains investigational in clinical liver transplantation. It is widely used to preserve kidneys for transplantation with improved results over static cold storage (SCS). At our center, we have used HMP in 31 adults receiving extended criteria donor (ECD) livers declined by the originating United Network for Organ Sharing region ("orphan livers"). These cases were compared to ECD SCS cases in a matched cohort study design. Livers were matched for donor age, recipient age, cold ischemic time, donor risk index and Model for End-Stage Liver Disease (MELD) score. HMP was performed for 3-7 h at 4-8 °C using our previously published protocol. Early allograft dysfunction rates were 19% in the HMP group versus 30% in the control group (p = 0.384). One-year patient survival was 84% in the HMP group versus 80% in the SCS group (p = NS). Post hoc analysis revealed significantly less biliary complications in the HMP group versus the SCS group (4 vs. 13, p = 0.016). Mean hospital stay was significantly shorter in the HMP group (13.64 ± 10.9 vs. 20.14 ± 11.12 days in the SCS group, p = 0.001). HMP provided safe and reliable preservation in orphan livers transplanted at our center.
Collapse
Affiliation(s)
- J V Guarrera
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University Medical Center, New York, NY
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Knaak JM, Spetzler VN, Goldaracena N, Boehnert MU, Bazerbachi F, Louis KS, Adeyi OA, Minkovich L, Yip PM, Keshavjee S, Levy GA, Grant DR, Selzner N, Selzner M. Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation. Liver Transpl 2014; 20:1296-305. [PMID: 25179693 DOI: 10.1002/lt.23986] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
An ischemic-type biliary stricture (ITBS) is a common feature after liver transplantation using donation after cardiac death (DCD) grafts. We compared sequential subnormothermic ex vivo liver perfusion (SNEVLP; 33°C) with cold storage (CS) for the prevention of ITBS in DCD liver grafts in pig liver transplantation (n = 5 for each group). Liver grafts were stored for 10 hours at 4°C (CS) or preserved with combined 7-hour CS and 3-hour SNEVLP. Parameters of hepatocyte [aspartate aminotransferase (AST), international normalized ratio (INR), factor V, and caspase 3 immunohistochemistry], endothelial cell (EC; CD31 immunohistochemistry and hyaluronic acid), and biliary injury and function [alkaline phosphatase (ALP), total bilirubin, and bile lactate dehydrogenase (LDH)] were determined. Long-term survival (7 days) after transplantation was similar between the SNEVLP and CS groups (60% versus 40%, P = 0.13). No difference was observed between SNEVLP- and CS-treated animals with respect to the peak of serum INR, factor V, or AST levels within 24 hours. CD31 staining 8 hours after transplantation demonstrated intact EC lining in SNEVLP-treated livers (7.3 × 10(-4) ± 2.6 × 10(-4) cells/μm(2)) but not in CS-treated livers (3.7 × 10(-4) ± 1.3 × 10(-4) cells/μm(2) , P = 0.03). Posttransplant SNEVLP animals had decreased serum ALP and serum bilirubin levels in comparison with CS animals. In addition, LDH in bile fluid was lower in SNEVLP pigs versus CS pigs (14 ± 10 versus 60 ± 18 μmol/L, P = 0.02). Bile duct histology revealed severe bile duct necrosis in 3 of 5 animals in the CS group but none in the SNEVLP group (P = 0.03). Sequential SNEVLP preservation of DCD grafts reduces bile duct and EC injury after liver transplantation.
Collapse
Affiliation(s)
- Jan M Knaak
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|