1
|
Adjumain S, Daniel P, Sun CX, Bradshaw G, Chew NJ, Tsui V, Lee H, Loi M, Zhukova N, Habarakada D, Yoel A, Vaghjiani VG, Game S, Ludlow LE, Neeman N, Sweet-Cordero EA, Eisenstat DD, Cain JE, Firestein R. Multidimensional, integrative profiling identifies BCL2L1 methylation as a predictor of MCL1 dependency in pediatric malignancies. JCI Insight 2025; 10:e184601. [PMID: 39846250 PMCID: PMC11790018 DOI: 10.1172/jci.insight.184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas. Using a pooled CRISPR/Cas9 knockout screening approach on 65 pediatric and 10 adult high-grade glioma (HGG) cell lines, myeloid cell leukemia 1 (MCL1) emerged as a key antiapoptotic gene essential in pediatric but not adult gliomas. We demonstrated that MCL1 is targetable using current small molecule inhibitors, and its inhibition leads to potent anticancer activity across pediatric HGG cell lines irrespective of genotype. Employing predictive modeling approaches on a large set of childhood cancer cell lines with multiomics data features, we identified a potentially previously unreported cluster of CpG sites in the antiapoptotic BCL-xL/BCL2L1 gene, which predicted MCL1 inhibitor response. We extended these data across multiple pediatric tumor types, showing that BCL2L1 methylation is a broad predictor of MCL1 dependency in vitro and in vivo. Overall, our multidimensional, integrated genomic approach identified MCL1 as a promising therapeutic target in several BCL2L1-methylated pediatric cancers, offering a translational strategy to identify patients most likely to benefit from MCL1 inhibitor therapy.
Collapse
Affiliation(s)
- Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gabrielle Bradshaw
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole J. Chew
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hanbyeol Lee
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nataliya Zhukova
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Children’s Cancer Centre, Monash Children’s Hospital, Monash Health, Clayton, Victoria, Australia
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Dilru Habarakada
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vijesh G. Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Shaye Game
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise E. Ludlow
- Children’s Cancer Centre Biobank, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Naama Neeman
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - E. Alejandro Sweet-Cordero
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - David D. Eisenstat
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Group, Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, and
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Di Nunno V, Lombardi G, Simonelli M, Minniti G, Mastronuzzi A, Di Ruscio V, Corrà M, Padovan M, Maccari M, Caccese M, Simonetti G, Berlendis A, Farinotti M, Pollo B, Antonelli M, Di Muzio A, Dipasquale A, Asioli S, De Biase D, Tosoni A, Silvani A, Franceschi E. The role of adjuvant chemotherapy in patients with H3K27 altered diffuse midline gliomas: a multicentric retrospective study. J Neurooncol 2024; 167:145-154. [PMID: 38457090 DOI: 10.1007/s11060-024-04589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Policlinico Umberto I, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Corrà
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giorgia Simonetti
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Berlendis
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, 20133, Italy
| | - Mariangela Farinotti
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Manila Antonelli
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Policlinico Umberto I, Rome, Italy
| | | | | | - Sofia Asioli
- IRCCS-Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy.
| |
Collapse
|
3
|
Al Sharie S, Abu Laban D, Nazzal J, Iqneibi S, Ghnaimat S, Al-Ani A, Al-Hussaini M. Midline Gliomas: A Retrospective Study from a Cancer Center in the Middle East. Cancers (Basel) 2023; 15:4545. [PMID: 37760513 PMCID: PMC10527416 DOI: 10.3390/cancers15184545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Midline gliomas are tumors that occur in midline structures and can be circumscribed or diffuse. Classical midline structures include the thalamus, brainstem, and spinal cord. Other midline structures include the corpus callosum, basal ganglia, ventricles, paraventricular structures, and cerebellum. Diffuse midline glioma (DMG) is a diffuse glioma that occurs in the classical midline structures, characterized by a specific genetic alteration, and associated with grim outcome. This study was conducted at King Hussein Cancer Center and reviewed the medical records of 104 patients with circumscribed and diffuse gliomas involving midline structures that underwent biopsy between 2005 and 2022. We included a final cohort of 104 patients characterized by a median age of 23 years and a male-to-female ratio of 1.59-to-1. Diffuse high-grade glioma (DHGG) was the most common pathological variant (41.4%), followed by DMG (28.9%). GFAP was positive in most cases (71.2%). Common positive mutations/alterations detected by surrogate immunostains included H3 K27me3 (28.9%), p53 (25.0%), and H3 K27M (20.2%). Age group, type of treatment, and immunohistochemistry were significantly associated with both the location of the tumor and tumor variant (all; p < 0.05). DMGs were predominantly found in the thalamus, whereas circumscribed gliomas were most commonly observed in the spinal cord. None of the diffuse gliomas outside the classical location, or circumscribed gliomas harbored the defining DMG mutations. The median overall survival (OS) for the entire cohort was 10.6 months. Only the tumor variant (i.e., circumscribed gliomas) and radiotherapy were independent prognosticators on multivariate analysis.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Jamil Nazzal
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Shahad Iqneibi
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Sura Ghnaimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
4
|
Perwein T, Giese B, Nussbaumer G, von Bueren AO, van Buiren M, Benesch M, Kramm CM. How I treat recurrent pediatric high-grade glioma (pHGG): a Europe-wide survey study. J Neurooncol 2023; 161:525-538. [PMID: 36720762 PMCID: PMC9992031 DOI: 10.1007/s11060-023-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE As there is no standard of care treatment for recurrent/progressing pediatric high-grade gliomas (pHGG), we aimed to gain an overview of different treatment strategies. METHODS In a web-based questionnaire, members of the SIOPE-BTG and the GPOH were surveyed on therapeutic options in four case scenarios (children/adolescents with recurrent/progressing HGG). RESULTS 139 clinicians with experience in pediatric neuro-oncology from 22 European countries participated in the survey. Most respondents preferred further oncological treatment in three out of four cases and chose palliative care in one case with marked symptoms. Depending on the case, 8-92% would initiate a re-resection (preferably hemispheric pHGG), combined with molecular diagnostics. Throughout all case scenarios, 55-77% recommended (re-)irradiation, preferably local radiotherapy > 20 Gy. Most respondents would participate in clinical trials and use targeted therapy (79-99%), depending on molecular genetic findings (BRAF alterations: BRAF/MEK inhibitor, 64-88%; EGFR overexpression: anti-EGFR treatment, 46%; CDKN2A deletion: CDK inhibitor, 18%; SMARCB1 deletion: EZH2 inhibitor, 12%). 31-72% would administer chemotherapy (CCNU, 17%; PCV, 8%; temozolomide, 19%; oral etoposide/trofosfamide, 8%), and 20-69% proposed immunotherapy (checkpoint inhibitors, 30%; tumor vaccines, 16%). Depending on the individual case, respondents would also include bevacizumab (6-18%), HDAC inhibitors (4-15%), tumor-treating fields (1-26%), and intraventricular chemotherapy (4-24%). CONCLUSION In each case, experts would combine conventional multimodal treatment concepts, including re-irradiation, with targeted therapy based on molecular genetic findings. International cooperative trials combining a (chemo-)therapy backbone with targeted therapy approaches for defined subgroups may help to gain valid clinical data and improve treatment in pediatric patients with recurrent/progressing HGG.
Collapse
Affiliation(s)
- Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| | - Barbara Giese
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Miriam van Buiren
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Benesch
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Christof Maria Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Zheng X, Li W, Xu H, Liu J, Ren L, Yang Y, Li S, Wang J, Ji T, Du G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm Sin B 2021; 11:3465-3480. [PMID: 34900530 PMCID: PMC8642618 DOI: 10.1016/j.apsb.2021.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum, showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.
Collapse
|
6
|
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and Treatment of H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13215280. [PMID: 34771443 PMCID: PMC8582453 DOI: 10.3390/cancers13215280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.
Collapse
|
7
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Sulman EP, Eisenstat DD. World Cancer Day 2021 - Perspectives in Pediatric and Adult Neuro-Oncology. Front Oncol 2021; 11:659800. [PMID: 34041027 PMCID: PMC8142853 DOI: 10.3389/fonc.2021.659800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in our understanding of the molecular genetics of pediatric and adult brain tumors and the resulting rapid expansion of clinical molecular neuropathology have led to improvements in diagnostic accuracy and identified new targets for therapy. Moreover, there have been major improvements in all facets of clinical care, including imaging, surgery, radiation and supportive care. In selected cohorts of patients, targeted and immunotherapies have resulted in improved patient outcomes. Furthermore, adaptations to clinical trial design have facilitated our study of new agents and other therapeutic innovations. However, considerable work remains to be done towards extending survival for all patients with primary brain tumors, especially children and adults with diffuse midline gliomas harboring Histone H3 K27 mutations and adults with isocitrate dehydrogenase (IDH) wild-type, O6 guanine DNA-methyltransferase gene (MGMT) promoter unmethylated high grade gliomas. In addition to improvements in therapy and care, access to the advances in technology, such as particle radiation or biologic therapy, neuroimaging and molecular diagnostics in both developing and developed countries is needed to improve the outcome of patients with brain tumors.
Collapse
Affiliation(s)
- Erik P. Sulman
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
- NYU Langone Health, New York, NY, United States
| | - David D. Eisenstat
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Picart T, Barritault M, Poncet D, Berner LP, Izquierdo C, Tabouret E, Figarella-Branger D, Idbaïh A, Bielle F, Bourg V, Vandenbos FB, Moyal ECJ, Uro-Coste E, Guyotat J, Honnorat J, Gabut M, Meyronet D, Ducray F. Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults. Neurooncol Adv 2021; 3:vdab061. [PMID: 34056608 PMCID: PMC8156974 DOI: 10.1093/noajnl/vdab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Diffuse hemispheric gliomas, H3 G34-mutant (DHG H3G34-mutant) constitute a distinct type of aggressive brain tumors. Although initially described in children, they can also affect adults. The aims of this study were to describe the characteristics of DHG H3G34-mutant in adults and to compare them to those of established types of adult WHO grade IV gliomas. Methods The characteristics of 17 adult DHG H3G34-mutant, 32 H3.3 K27M-mutant diffuse midline gliomas (DMG), 100 IDH-wildtype, and 36 IDH-mutant glioblastomas were retrospectively analyzed. Results Median age at diagnosis in adult DHG H3G34-mutant was 25 years (range: 19–33). All tumors were hemispheric. For 9 patients (56%), absent or faint contrast enhancement initially suggested another diagnosis than a high-grade glioma, and diffusion-weighted imaging seemed retrospectively more helpful to suspect an aggressive tumor than MR-spectroscopy and perfusion MRI. All cases were IDH-wildtype. Most cases were immunonegative for ATRX (93%) and Olig2 (100%) and exhibited MGMT promoter methylation (82%). The clinical and radiological presentations of adult DHG H3G34-mutant were different from those of established types of adult grade IV gliomas. Median overall survival of adult DHG H3G34-mutant was 12.4 months compared to 19.6 months (P = .56), 11.7 months (P = .45), and 50.5 months (P = .006) in H3.3 K27M-mutant DMG, IDH-wildtype, and IDH-mutant glioblastomas, respectively. Conclusions Adult DHG H3G34-mutant are associated with distinct characteristics compared to those of established types of adult WHO grade IV gliomas. This study supports considering these tumors as a new type of WHO grade IV glioma in future classifications.
Collapse
Affiliation(s)
- Thiébaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France
| | - Marc Barritault
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Molecular Biology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Delphine Poncet
- University Claude Bernard Lyon I, Villeurbanne, France.,Department of Molecular Biology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France.,INSERM 1052, CNRS 5286, Signaling, metabolism and tumor progression Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, France
| | - Lise-Prune Berner
- Department of Neuroradiology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Cristina Izquierdo
- Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Department of Neuroscience Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, BarcelonaSpain
| | - Emeline Tabouret
- Department of Neurooncology, AP-HM, Hôpital de la Timone, Marseille, France.,Aix-Marseille University, CNRS UMR 7051, Institut de Neurophysiopathologie, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Ahmed Idbaïh
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Franck Bielle
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France.,Sorbonne University, Inserm U1127, CNRS, UMR 7225, Université Paris 06 4 Place Jussieu, Paris, France
| | | | - Fanny Burel Vandenbos
- Department of Neuropathology, Hôpital Pasteur, Nice, France.,Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiation Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France.,Centre de Recherches contre le Cancer de Toulouse, INSERM U1037, Toulouse, France
| | - Emmanelle Uro-Coste
- Centre de Recherches contre le Cancer de Toulouse, INSERM U1037, Toulouse, France.,Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jérôme Honnorat
- University Claude Bernard Lyon I, Villeurbanne, France.,Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène - Equipe Synaptopathies et autoanticorps, INSERM U1217 / UMR CNRS 5310, Lyon, France
| | - Mathieu Gabut
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France
| | - David Meyronet
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Pathology and Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - François Ducray
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
10
|
Metselaar DS, du Chatinier A, Stuiver I, Kaspers GJL, Hulleman E. Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments. Front Oncol 2021; 11:662209. [PMID: 33869066 PMCID: PMC8047603 DOI: 10.3389/fonc.2021.662209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death in children. These epigenetically dysregulated tumors often harbor mutations in genes encoding histone 3, which contributes to a stem cell-like, therapy-resistant phenotype. Furthermore, pHGG are characterized by a diffuse growth pattern, which, together with their delicate location, makes complete surgical resection often impossible. Radiation therapy (RT) is part of the standard therapy against pHGG and generally the only modality, apart from surgery, to provide symptom relief and a delay in tumor progression. However, as a single treatment modality, RT still offers no chance for a cure. As with most therapeutic approaches, irradiated cancer cells often acquire resistance mechanisms that permit survival or stimulate regrowth after treatment, thereby limiting the efficacy of RT. Various preclinical studies have investigated radiosensitizers in pHGG models, without leading to an improved clinical outcome for these patients. However, our recently improved molecular understanding of pHGG generates new opportunities to (re-)evaluate radiosensitizers in these malignancies. Furthermore, the use of radio-enhancing agents has several benefits in pHGG compared to other cancers, which will be discussed here. This review provides an overview and a critical evaluation of the radiosensitization strategies that have been studied to date in pHGG, thereby providing a framework for improving radiosensitivity of these rapidly fatal brain tumors.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Iris Stuiver
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
11
|
Guidi M, Giunti L, Buccoliero AM, Caporalini C, Censullo ML, Galli L, Genitori L, Sardi I. Genetic signature and treatment of pediatric high-grade glioma. Mol Clin Oncol 2021; 14:70. [PMID: 33732456 DOI: 10.3892/mco.2021.2232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/13/2020] [Indexed: 11/05/2022] Open
Abstract
Pediatric high-grade glioma (HGG) is a type of malignancy that carries a poor prognosis. The genetic analysis of HGGs has previously identified useful mutations, the targeting of which has improved prognosis. Thus, further research into the more common mutations, such as H3 histone variants (HIST1H3B and H3F3A) and BRAF V600E, may be useful in identifying tumors with different prognoses, as the mutations are considered to drive two distinct oncogenic programs. The present study performed a retrospective analysis of pediatric HGGs. In total, 42 cases of HGG, including 32 cases (76.1%) of anaplastic astrocytoma and 10 cases (23.8%) of glioblastoma multiforme (GBM), were assessed. The median age of the patients was 7 years (range, 0-32 years). Mutations on histone H3, in particular the K27M and G34R mutations in the distinct variants HIST1H3B and H3F3A, in addition to the presence of the BRAF V600E mutation, were analyzed in 24 patients. The H3F3A K27M mutation was identified in 7 patients (29.1%), while the HIST1H3B K27M mutation was only observed in 1 patient with GBM. In addition, 5 patients harbored a BRAF V600E mutation (21%), while the H3F3A G34R mutation was not recorded in any of the patients. The overall survival of the wild-type patients at 20 months was 68% [confidence interval (CI): 38-85%] compared with 28% (CI: 0.4-60%) in patients with the H3F3A K27M mutation. These results suggested that patients with the H3F3A K27M mutation had a worse prognosis compared with wild-type patients (P=0.0045). Moreover, 3/5 patients with the BRAF V600E mutation had HGGs that were derived from a previous low-grade glioma (LGG; P=0.001). In conclusion, these results suggested that histone H3 mutations may help predict the outcome in patients with HGG. In addition, the BRAF V600E mutation was found to be associated with an increased risk of anaplastic progression. The novel data of the present study may help better define the clinical and radiological characteristics of glioma.
Collapse
Affiliation(s)
- Milena Guidi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | | | - Chiara Caporalini
- Pathology Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Maria Luigia Censullo
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, I-50139 Florence, Italy
| | - Lorenzo Genitori
- Neurosurgery Unit, Meyer Children's University Hospital, I-50139 Florence, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I-50139 Florence, Italy
| |
Collapse
|
12
|
Zhu X, Lazow MA, Schafer A, Bartlett A, Senthil Kumar S, Mishra DK, Dexheimer P, DeWire M, Fuller C, Leach JL, Fouladi M, Drissi R. A pilot radiogenomic study of DIPG reveals distinct subgroups with unique clinical trajectories and therapeutic targets. Acta Neuropathol Commun 2021; 9:14. [PMID: 33431066 PMCID: PMC7798248 DOI: 10.1186/s40478-020-01107-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
An adequate understanding of the relationships between radiographic and genomic features in diffuse intrinsic pontine glioma (DIPG) is essential, especially in the absence of universal biopsy, to further characterize the molecular heterogeneity of this disease and determine which patients are most likely to respond to biologically-driven therapies. Here, a radiogenomics analytic approach was applied to a cohort of 28 patients with DIPG. Tumor size and imaging characteristics from all available serial MRIs were evaluated by a neuro-radiologist, and patients were divided into three radiographic response groups (partial response [PR], stable disease [SD], progressive disease [PD]) based on MRI within 2 months of radiotherapy (RT) completion. Whole genome and RNA sequencing were performed on autopsy tumor specimens. We report several key, therapeutically-relevant findings: (1) Certain radiologic features on first and subsequent post-RT MRIs are associated with worse overall survival, including PD following irradiation as well as present, new, and/or increasing peripheral ring enhancement, necrosis, and diffusion restriction. (2) Upregulation of EMT-related genes and distant tumor spread at autopsy are observed in a subset of DIPG patients who exhibit poorer radiographic response to irradiation and/or higher likelihood of harboring H3F3A mutations, suggesting possible benefit of upfront craniospinal irradiation. (3) Additional genetic aberrations were identified, including DYNC1LI1 mutations in a subgroup of patients with PR on post-RT MRI; further investigation into potential roles in DIPG tumorigenesis and/or treatment sensitivity is necessary. (4) Whereas most DIPG tumors have an immunologically “cold” microenvironment, there appears to be a subset which harbor a more inflammatory genomic profile and/or higher mutational burden, with a trend toward improved overall survival and more favorable radiographic response to irradiation, in whom immunotherapy should be considered. This study has begun elucidating relationships between post-RT radiographic response with DIPG molecular profiles, revealing radiogenomically distinct subgroups with unique clinical trajectories and therapeutic targets.
Collapse
|
13
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
14
|
Gambella A, Senetta R, Collemi G, Vallero SG, Monticelli M, Cofano F, Zeppa P, Garbossa D, Pellerino A, Rudà R, Soffietti R, Fagioli F, Papotti M, Cassoni P, Bertero L. NTRK Fusions in Central Nervous System Tumors: A Rare, but Worthy Target. Int J Mol Sci 2020; 21:ijms21030753. [PMID: 31979374 PMCID: PMC7037946 DOI: 10.3390/ijms21030753] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. Loss of function alterations in these genes can lead to nervous system development problems; conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions have been detected with extremely variable frequencies in many pediatric and adult cancer types, including central nervous system (CNS) tumors. These alterations can be detected by different laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches has specific advantages and limitations which must be taken into account for an appropriate use in diagnostics or research. Moreover, therapeutic targeting of this molecular marker recently showed extreme efficacy. Considering the overall lack of effective treatments for brain neoplasms, it is expected that detection of NTRK fusions will soon become a mainstay in the diagnostic assessment of CNS tumors, and thus in-depth knowledge regarding this topic is warranted.
Collapse
Affiliation(s)
- Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (G.C.)
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (R.S.); (M.P.)
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (G.C.)
| | - Stefano Gabriele Vallero
- Pediatric Onco-Hematology Unit, Department of Pediatric and Public Health Sciences, University of Turin, 10126 Turin, Italy; (S.G.V.); (F.F.)
| | - Matteo Monticelli
- Neurosurgery Unit, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.M.); (F.C.); (P.Z.); (D.G.)
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.M.); (F.C.); (P.Z.); (D.G.)
| | - Pietro Zeppa
- Neurosurgery Unit, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.M.); (F.C.); (P.Z.); (D.G.)
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.M.); (F.C.); (P.Z.); (D.G.)
| | - Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (R.R.); (R.S.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (R.R.); (R.S.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (R.R.); (R.S.)
| | - Franca Fagioli
- Pediatric Onco-Hematology Unit, Department of Pediatric and Public Health Sciences, University of Turin, 10126 Turin, Italy; (S.G.V.); (F.F.)
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (R.S.); (M.P.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (G.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.G.); (G.C.)
- Correspondence: ; Tel.: +39-011-633-5466
| |
Collapse
|
15
|
Lester McCully C, Rodgers LT, Cruz R, Thomas ML, Peer CJ, Figg WD, Warren KE. Plasma and cerebrospinal fluid pharmacokinetics of the DNA methyltransferase inhibitor, 5-azacytidine, alone and with inulin, in nonhuman primate models. Neurooncol Adv 2020; 2:vdaa005. [PMID: 32309806 PMCID: PMC7146732 DOI: 10.1093/noajnl/vdaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenetic modifiers are being investigated for a number of CNS malignancies as tumor-associated mutations such as isocitrate dehydrogenase mutations (IDH1/IDH2) and H3K27M mutations, which result in aberrant signaling, are identified. We evaluated the CNS exposure of the DNA methyltransferase inhibitor, 5-azacytidine (5-AZA), in preclinical nonhuman primate (NHP) models to inform its clinical development for CNS tumors. METHODS 5-AZA and 5-AZA+Inulin pharmacokinetics (PK) were evaluated in NHPs (n = 10) following systemic (intravenous [IV]) and intrathecal (intraventricular [IT-V], intralumbar [IT-L], and cisternal [IT-C]) administration. Plasma, cerebrospinal fluid (CSF), cortical extracellular fluid (ECF), and tissues were collected. 5-AZA levels were quantified via ultra-high-performance liquid chromatography with tandem mass spectrometric detection assay and inulin via ELISA. PK parameters were calculated using noncompartmental methods. RESULTS After IV administration, minimal plasma exposure (area under the curve [AUC] range: 2.4-3.2 h*µM) and negligible CSF exposure were noted. CSF exposure was notably higher after IT-V administration (AUCINF 1234.6-5368.4 h*µM) compared to IT-L administration (AUCINF 7.5-19.3 h*µM). CSF clearance after IT administration exceeded the mean inulin CSF flow rate of 0.018 ± 0.003 ml/min as determined by inulin IT-V administration. 5-AZA IT-V administration with inulin increased the 5-AZA CSF duration of exposure by 2.2-fold. IT-C administration yielded no quantifiable 5-AZA ECF concentrations but resulted in quantifiable tissue levels. CONCLUSIONS IT administration of 5-AZA is necessary to achieve adequate CNS exposure. IT administration results in pronounced and prolonged 5-AZA CSF exposure above the reported IC50 range for IDH-mutated glioma cell lines. Inulin administered with 5-AZA increased the duration of exposure for 5-AZA.
Collapse
Affiliation(s)
- Cynthia Lester McCully
- Pediatric Neuro-Oncology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Louis T Rodgers
- Pediatric Neuro-Oncology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael Cruz
- Pediatric Neuro-Oncology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory Animal Science Program and Leidos Biomedical Research, Inc., National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marvin L Thomas
- Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E Warren
- Pediatric Neuro-Oncology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Guerra-García P, Marshall LV, Cockle JV, Ramachandran PV, Saran FH, Jones C, Carceller F. Challenging the indiscriminate use of temozolomide in pediatric high-grade gliomas: A review of past, current, and emerging therapies. Pediatr Blood Cancer 2020; 67:e28011. [PMID: 31617673 DOI: 10.1002/pbc.28011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/26/2023]
Abstract
Pediatric high-grade gliomas (pHGG) constitute 8% to 12% of primary brain tumors in childhood. The most widely utilized treatment encompasses surgical resection followed by focal radiotherapy and temozolomide. However, experiences over past decades have not demonstrated improved outcomes. pHGG have been classified into different molecular subgroups defined by mutations in histone 3, IDH gene, MAPK pathway, and others, thereby providing a rationale for various targeted therapies. Additionally, immunotherapy and drug repurposing have also become attractive adjunctive treatments. This review focuses on past, present, and emerging treatments for pHGG integrating molecular research with the mainstream pediatric drug development in Europe and the United States to sketch a way forward in the development of novel therapeutic approaches. The implementation of randomized clinical trials with adaptive designs, underpinned by a robust biological rationale, and harnessing collaboration between the pharmaceutical industry, academia, regulators and patients/parents organizations will be essential to improve the outcomes for these children.
Collapse
Affiliation(s)
- Pilar Guerra-García
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Paediatric Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Lynley V Marshall
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Julia V Cockle
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Frank H Saran
- Department of Radiation Oncology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Department of Radiation Oncology, Auckland District Health Board, Auckland, New Zealand
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Carceller
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
17
|
Richardson TE, Sathe AA, Kanchwala M, Jia G, Habib AA, Xiao G, Snuderl M, Xing C, Hatanpaa KJ. Genetic and Epigenetic Features of Rapidly Progressing IDH-Mutant Astrocytomas. J Neuropathol Exp Neurol 2019; 77:542-548. [PMID: 29741737 DOI: 10.1093/jnen/nly026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IDH-mutant astrocytomas are significantly less aggressive than their IDH-wildtype counterparts. We analyzed The Cancer Genome Atlas dataset (TCGA) and identified a small group of IDH-mutant, WHO grade II-III astrocytomas (n = 14) with an unexpectedly poor prognosis characterized by a rapid progression to glioblastoma and death within 3 years of the initial diagnosis. Compared with IDH-mutant tumors with the typical, extended progression-free survival in a control group of age-similar patients, the tumors in the rapidly progressing group were characterized by a markedly increased level of overall copy number alterations ([CNA]; p = 0.006). In contrast, the mutation load was similar, as was the methylation pattern, being consistent with IDH-mutant astrocytoma. Two of the gliomas (14%) in the rapidly progressing, IDH-mutant group but none of the other grade II-III gliomas in the TCGA (n = 283) had pathogenic mutations in genes (FANCB and APC) associated with maintaining chromosomal stability. These results suggest that chromosomal instability can negate the beneficial effect of IDH mutations in WHO II-III astrocytomas. The mechanism of the increased CNA is unknown but in some cases appears to be due to mutations in genes with a role in chromosomal stability. Increased CNA could serve as a biomarker for tumors at risk for rapid progression.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gaoxiang Jia
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas.,North Texas Veterans Affairs Medical Center, Dallas, Texas
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matija Snuderl
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Song X, Shu XH, Wu ML, Zheng X, Jia B, Kong QY, Liu J, Li H. Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas. BMC Cancer 2018; 18:871. [PMID: 30176837 PMCID: PMC6122735 DOI: 10.1186/s12885-018-4771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background Although our previous study revealed lumbar punctured resveratrol could remarkably prolong the survival of rats bearing orthotopic glioblastomas, it also suggested the administration did not completely suppress rapid tumour growth. These evidences led us to consider that the prognosis of tumour-bearing rats may be further improved if this treatment is used in combination with neurosurgery. Therefore, we investigated the effectiveness of the combined treatment on rat orthotopic glioblastomas. Methods Rat RG2 glioblastoma cells were inoculated into the brains of 36 rats. The rats were subjected to partial tumour removal after they showed symptoms of intracranial hypertension. There were 28 rats that survived the surgery, and these animals were randomly and equally divided into the control group without postoperative treatment and the LP group treated with 100 μl of 300 μM resveratrol via the LP route. Resveratrol was administered 24 h after tumour resection in 3-day intervals, and the animals received 7 treatments. The intracranial tumour sizes, average life span, cell apoptosis and STAT3 signalling were evaluated by multiple experimental approaches in the tumour tissues harvested from both groups. Results The results showed that 5 of the 14 (35.7%) rats in the LP group remained alive over 60 days without any sign of recurrence. The remaining nine animals had a longer mean postoperative survival time (11.0 ± 2.9 days) than that of the (7.3 + 1.3 days; p < 0.05) control group. The resveratrol-treated tumour tissues showed less Ki67 labelling, widely distributed apoptotic regions, upregulated PIAS3 expression and reduced p-STAT3 nuclear translocation. Conclusions This study demonstrates that postoperative resveratrol administration efficiently improves the prognosis of rat advanced orthotopic glioblastoma via inhibition of growth, induction of apoptosis and inactivation of STAT3 signalling. Therefore, this therapeutic approach could be of potential practical value in the management of glioblastomas.
Collapse
Affiliation(s)
- Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Hong Shu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xu Zheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Jia
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. .,South China University of Technology School of Medicine, Guangzhou, 520006, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
Picart T, Barritault M, Berthillier J, Meyronet D, Vasiljevic A, Frappaz D, Honnorat J, Jouanneau E, Poncet D, Ducray F, Guyotat J. Characteristics of cerebellar glioblastomas in adults. J Neurooncol 2017; 136:555-563. [DOI: 10.1007/s11060-017-2682-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/11/2017] [Indexed: 12/16/2022]
|
20
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|