1
|
Childs AVR, Henderson RD, Henderson DJ, Waldmann JY, Szollosi I. Treatments and therapies for symptoms and clinical manifestations of adult type 1 myotonic dystrophy: A scoping review. J Neurol Sci 2025; 472:123470. [PMID: 40154158 DOI: 10.1016/j.jns.2025.123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Myotonic Dystrophy is the most common adult-onset muscular dystrophy, with a broad, multi-systemic presentation. There is no cure, so quality-of-life improvements rely on treatment of symptoms and clinical manifestations. This review aimed to synthesize primary research evaluating treatments or therapies for symptoms and clinical manifestations of adult type 1 Myotonic Dystrophy and map targets against patient-reported symptom burden. Embase, MEDLINE, Web of Science, CINAHL, CENTRAL, and PsycINFO were searched for relevant studies published to 16th of October 2024. Two independent reviewers screened title and abstract, then full-text records for eligibility and conflicts were settled by group discussion. Study information was extracted, and treatment targets were mapped against patient-reported symptom burden as reported by Hagerman et al. The literature was limited to only 86 studies; 2/3 conducted in cohorts of <30 participants. Main target symptoms were muscle (50 %), respiratory (15.1 %), central nervous system (12.7 %) and cardiac conduction disorders (10.5 %). Most treatments were pharmacotherapies (43 %), followed by physical training (15.1 %), Non-invasive Ventilation (11.5 %), and Cardiac Resynchronization Therapy (10.5 %). The distribution of treatment targets was poorly representative of patient-reported symptoms. Outcome measures, clinical and patient-reported, were varied and utilized without standardization within treatment categories. These findings emphasize the need for evidence-based clinical management targeting patient priorities to produce quality-of-life improvements.
Collapse
Affiliation(s)
- Alexandra Victoria Rose Childs
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Australia; School of Biomedical Science, The University of Queensland, Brisbane, Australia
| | | | | | | | - Irene Szollosi
- Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Australia; School of Biomedical Science, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Türken A, Çapar H. Analysis of Changes in Bone Mineral Density by Disability Level in Patients with Myotonic Dystrophy Myopathy. J Clin Densitom 2025; 28:101584. [PMID: 40184929 DOI: 10.1016/j.jocd.2025.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/13/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE/INTRODUCTION The aim of this study was to determine which method can determine bone mineral changes in patients with Myotonic Dystrophy at an early age by applying age classification and Modified Rankin Scale for Neurological Disability (MRSND). METHODS This descriptive, cross-sectional and retrospective study was conducted in 52 myopathy patients diagnosed with myotonic dystrophy. Analyses were performed using SPSS 25 and STATA 14. Frequency and percentage, mean and standard deviation values were reported and Pearson correlation, t-test, ANOVA and multiple linear regression analyses were performed. Confidence levels of 0.10, 0.05 and 0.01. The study complies with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement guidelines for reporting cross-sectional studies (STROBE CHECKLIST). RESULTS According to the regression analysis results, body mass index had a positive effect on Femoral Z Score (p < 0.01). In addition, vitamin D had a positive effect on Femoral Z Score (p < 0.05). On the other hand, MRSND had a negative effect on Femoral Z Score (p < 0.01). CONCLUSION Myotonic dystrophic myopathy has been shown to impair the mineral structure of bone. Patients with this condition have been shown to recognize possible changes in their bones earlier in using the MRSND scale.
Collapse
Affiliation(s)
- Askeri Türken
- University of Health Sciences, Gazi Yaşargil Training and Research Hospital, Department of Physical Medicine and Rehabilitation, Türkiye.
| | - Haşim Çapar
- Dicle University, Faculty of Economics and Administrative Sciences, Department of Health Management, Diyarbakır, Türkiye.
| |
Collapse
|
3
|
Carrascosa-Sàez M, Colom-Rodrigo A, González-Martínez I, Pérez-Gómez R, García-Rey A, Piqueras-Losilla D, Ballestar A, Llamusí B, Cerro-Herreros E, Artero R. Use of HSA LR female mice as a model for the study of myotonic dystrophy type I. Lab Anim (NY) 2025; 54:92-102. [PMID: 40016516 PMCID: PMC11957995 DOI: 10.1038/s41684-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
HSALR mice are the most broadly used animal model for studying myotonic dystrophy type I (DM1). However, so far, HSALR preclinical studies have often excluded female mice or failed to document the biological sex of the animals. This leaves an unwanted knowledge gap concerning the differential development of DM1 in males and females, particularly considering that the disease has a different clinical presentation in men and women. Here we compared typical functional measurements, histological features, molecular phenotypes and biochemical plasma profiles in the muscles of male and female HSALR mice in search of any significant between-sex differences that could justify this exclusion of female mice in HSALR studies and, critically, in candidate therapy assays performed with this model. We found no fundamental differences between HSALR males and females during disease development. Both sexes presented comparable functional and tissue phenotypes, with similar molecular muscle profiles. The only sex differences and significant interactions observed were in plasma biochemical parameters, which are also intrinsically variable in patients with DM1. In addition, we tested the influence of age on these measurements. We therefore suggest including female HSALR mice in regular DM1 studies, and recommend documenting the sex of animals, especially in studies focusing on metabolic alterations. This will allow researchers to detect and report any potential differences between male and female HSALR mice, especially regarding the efficacy of experimental treatments that could be relevant to patients with DM1.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- ARTHEx Biotech, Paterna, Spain
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Spain
| | - Anna Colom-Rodrigo
- ARTHEx Biotech, Paterna, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Irene González-Martínez
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Raquel Pérez-Gómez
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
- ARTHEx Biotech, Paterna, Spain
| | | | - Ana Ballestar
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | | | - Estefanía Cerro-Herreros
- ARTHEx Biotech, Paterna, Spain.
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain.
- Incliva Biomedical Research Institute, Valencia, Spain.
| | - Ruben Artero
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
4
|
Chulanova Y, Breier D, Peer D. Delivery of genetic medicines for muscular dystrophies. Cell Rep Med 2025; 6:101885. [PMID: 39765231 PMCID: PMC11866442 DOI: 10.1016/j.xcrm.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
Muscular dystrophies are a group of heterogenic disorders characterized by progressive muscle weakness, the most common of them being Duchenne muscular dystrophy (DMD). Muscular dystrophies are caused by mutations in over 50 distinct genes, and many of them are caused by different genetic mechanisms. Currently, none of these diseases have a cure. However, in recent years, significant progress has been made to correct the underlying genetic cause. The clinical development of adeno-associated viral vector-based therapies has simultaneously produced excitement and disappointment in the research community due to the moderate effect, making it clear that new methods of muscle delivery have to be created. Herein, we review the main characteristics of major muscular dystrophies and outline various muscle-targeted delivery methods being explored for genetic medicines.
Collapse
Affiliation(s)
- Yulia Chulanova
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Mahdavi M, Prévost K, Balthazar P, Hus IFP, Duchesne É, Dumont N, Gagné-Ouellet V, Gagnon C, Laforest-Lapointe I, Massé E. Disturbance of the human gut microbiota in patients with Myotonic Dystrophy type 1. Comput Struct Biotechnol J 2024; 23:2097-2108. [PMID: 38803516 PMCID: PMC11128782 DOI: 10.1016/j.csbj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a rare autosomal dominant genetic disorder. Although DM1 is primarily characterized by progressive muscular weakness, it exhibits many multisystemic manifestations, such as cognitive deficits, cardiac conduction abnormalities, and cataracts, as well as endocrine and reproductive issues. Additionally, the gastrointestinal (GI) tract is frequently affected, encompassing the entire digestive tract. However, the underlying causes of these GI symptoms remain uncertain, whether it is biomechanical problems of the intestine, involvement of bacterial communities, or both. The primary objective of this study is to investigate the structural changes in the gut microbiome of DM1 patients. To achieve this purpose, 35 patients with DM1 were recruited from the DM-Scope registry of the neuromuscular clinic in the Saguenay-Lac-St-Jean region of the province of Québec, Canada. Stool samples from these 35 patients, including 15 paired samples with family members living with them as controls, were collected. Subsequently, these samples were sequenced by 16S MiSeq and were analyzed with DADA2 to generate taxonomic signatures. Our analysis revealed that the DM1 status correlated with changes in gut bacterial community. Notably, there were differences in the relative abundance of Bacteroidota, Euryarchaeota, Fusobacteriota, and Cyanobacteria Phyla compared to healthy controls. However, no significant shift in gut microbiome community structure was observed between DM1 phenotypes. These findings provide valuable insights into how the gut bacterial community, in conjunction with biomechanical factors, could potentially influence the gastrointestinal tract of DM1 patients.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Fisette-Paul Hus
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Élise Duchesne
- Physiotherapy teaching unit, Université du Québec à Chicoutimi, Chicoutimi, G7H 2B1, Canada
| | - Nicolas Dumont
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Valérie Gagné-Ouellet
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Cynthia Gagnon
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
6
|
Shetty S, Luo Y, Thomas A, Guha S, Lott D. Effect of exercise training on clinical and physiological variables in adults with myotonic dystrophy type 1: A systematic review protocol. MethodsX 2024; 13:102957. [PMID: 39376683 PMCID: PMC11456787 DOI: 10.1016/j.mex.2024.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a neuromuscular disease characterized by multisystemic involvement including a progressive loss of muscle mass and strength. Further investigation on the effect of exercise in adults with DM1 is needed to incorporate impactful recent findings to better understand the utility of exercise as an intervention. This review aims to summarize and appraise the literature on the effects of aerobic and strength training on clinical and physiological variables in adults with DM1. Six online databases (PubMed, Scopus, Web of Science, CINAHL, EMBASE, and CENTRAL) will be searched using appropriate search terms. Two reviewers will independently screen the relevant studies and extract the data from the selected articles. The methodological quality of the studies included will be assessed using the Joanna Briggs Critical Appraisal checklist. A meta-analysis will be performed if appropriate. This systematic review and meta-analysis will summarize, synthesize, and appraise evidence on the effect of aerobic and strength training on clinical and physiological variables in adults with DM1. The findings of this review will help in clinical decision-making and guide future researchers working with this patient population.
Collapse
Affiliation(s)
- Saidan Shetty
- Manipal Academy of Higher Education (MAHE), Manipal-576104, Karnataka, India
| | - Yuting Luo
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
| | - Aruna Thomas
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Subharup Guha
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Donovan Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Garmendia J, Labayru G, Souto Barreto PD, Vergara I, de Munain AL, Sistiaga A. Common Characteristics Between Frailty and Myotonic Dystrophy Type 1: A Narrative Review. Aging Dis 2024:AD.2024.0950. [PMID: 39325937 DOI: 10.14336/ad.2024.0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder often considered a model of accelerated aging due to the early appearance of certain age-related clinical manifestations and cellular and molecular aging markers. Frailty, a state of vulnerability related to aging, has been recently studied in neurological conditions but has received considerably less attention in neuromuscular disorders. This narrative review aims to describe 1) the common characteristics between Fried's frailty phenotype criteria (muscular weakness, slow gait speed, weight loss, exhaustion/fatigue, and low physical activity) and DM1, and 2) the psychological and social factors potentially contributing to frailty in DM1. This review gathered evidence suggesting that DM1 patients meet four of the five frailty phenotype criteria. Additionally, longitudinal studies report the deterioration of these criteria over time in DM1. Patients also exhibit psychological/cognitive and social factors that might contribute to frailty. Monitoring frailty criteria in the DM1 population could help to implement timely preventions and interventions to reduce the disease burden and severity of frailty symptoms.
Collapse
Affiliation(s)
- Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Philipe de Souto Barreto
- Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- CERPOP UMR 1295, Inserm, Université Paul Sabatier, Toulouse, France
| | - Itziar Vergara
- Osakidetza Health Care Directorate, PC-IHO Research Unit of Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
- Primary Care Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Spain
| | - Adolfo López de Munain
- Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
8
|
Madrid DA, Knapp RA, Lynch D, Clemens P, Weaver AA, Puwanant A. Associations between lower extremity muscle fat fraction and motor performance in myotonic dystrophy type 2: A pilot study. Muscle Nerve 2023; 67:506-514. [PMID: 36938823 PMCID: PMC10898809 DOI: 10.1002/mus.27821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION/AIMS Although muscle structure measures from magnetic resonance imaging (MRI) have been used to assess disease severity in muscular dystrophies, little is known about how these measures are affected in myotonic dystrophy type 2 (DM2). We aim to characterize lower extremity muscle fat fraction (MFF) as a potential biomarker of disease severity, and evaluate its relationship with motor performance in DM2. METHODS 3-Tesla MRIs were obtained from nine patients with DM2 and six controls using a T1W-Dixon protocol. To calculate MFF, muscle volumes were segmented from proximal, middle, and distal regions of the thigh and calf. Associations between MFF and motor performance were calculated using Spearman's correlations (ρ). RESULTS Mean age of DM2 participants was 62 ± 11 y (89% female), and mean symptom duration was 20 ± 12 y. Compared to controls, the DM2 group had significantly higher MFF in the thigh and the calf segments (p-value = .002). The highest MFF at the thigh in DM2 was located in the posterior compartment (39.7 ± 12.9%) and at the calf was the lateral compartment (31.5 ± 8.7%). In the DM2 group, we found a strong correlation between the posterior thigh MFF and the 6-min walk test (ρ = -.90, p-value = .001). The lateral calf MFF was also strongly correlated with the step test (ρ = -0.82, p-value = .006). DISCUSSION Our pilot data suggest a potential correlation between lower extremity MFF and some motor performance tests in DM2. Longitudinal studies with larger sample sizes are required to validate MFF as a marker of disease severity in DM2.
Collapse
Affiliation(s)
- Diana A Madrid
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Rebecca A Knapp
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, 27109, USA
| | - Delanie Lynch
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Paula Clemens
- Department of Neurology, University of Pittsburgh School of Medicine and Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, 15213, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101, USA
| | - Araya Puwanant
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
9
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
10
|
Raymond K, Gagnon C, Levasseur M. Multiple Case Study of Changes in Participation of Adults with Myotonic Dystrophy Type 1: Importance of Redesigning Accomplishment and Resilience. J Neuromuscul Dis 2022; 9:731-755. [DOI: 10.3233/jnd-210780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Myotonic dystrophy type 1 (DM1) is the most prevalent adult form of neuromuscular disorders, for which a decrease of participation with age is known. However, little is known about facilitators and barriers to participation, especially from the perspective of both patients and caregivers. Objective: This study explored and explained changes in participation post-diagnosis with myotonic dystrophy type 1 from the perspective of six adults, their relatives and nurse case managers. Methods: A multiple case study was carried out with these triads (n = 6) using semi-structured individual interviews, medical charts, and a participation patient-reported outcome measure. The six cases were built around three women and three men (age: 40–56 years; disease duration: 19–39 years). Their “relatives” were mainly family members. Nurse case managers had done annual follow-ups with all the adults for approximately ten years. Changes in participation were characterized generally by: 1) heterogeneity, 2) insidious increase in restrictions, and more specifically by: 3) redesigning accomplishment, 4) progressive social isolation, 5) restrictions in life-space mobility, and 6) increasingly sedentary activities. Results: Important facilitators of participation were the adult’s resilience, highly meaningful activities, social support, living arrangement, and willingness to use technical aids. Barriers were mostly related to symptoms and a precarious social network, and were affected by misfit and potential syndemic interactions between personal (e.g., comorbidities) and environmental (e.g., stigma) factors. Conclusion: This study identified key facilitators and barriers and their underlying processes, which should be integrated into the evaluation and intervention framework to optimize participation over time.
Collapse
Affiliation(s)
- Kateri Raymond
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Jonquière, Canada. 2230, rue de l’Hôpital, C.P. 1200, Jonquière (Québec), G7X 7X2, Canada
- Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada. 1036, rue Belvédère Sud, Sherbrooke (Québec), J1H 4C4, Canada
- Centre de recherche Charles-Le Moyne (CR-CLM), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Chicoutimi, Canada. 305, rue Saint-Vallier, Chicoutimi (Québec), G7H 5H6, Canada
| | - Cynthia Gagnon
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Jonquière, Canada. 2230, rue de l’Hôpital, C.P. 1200, Jonquière (Québec), G7X 7X2, Canada
- Centre de recherche Charles-Le Moyne (CR-CLM), Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-St-Jean, Chicoutimi, Canada. 305, rue Saint-Vallier, Chicoutimi (Québec), G7H 5H6, Canada
| | - Mélanie Levasseur
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada. 3001, 12 avenue Nord, Sherbrooke (Québec), J1H 5N4, Canada
- Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada. 1036, rue Belvédère Sud, Sherbrooke (Québec), J1H 4C4, Canada
| |
Collapse
|
11
|
Hamel JI, McDermott MP, Hilbert JE, Martens WB, Luebbe E, Tawil R, Moxley RT, Thornton CA. Milestones of progression in myotonic dystrophy type 1 and type 2. Muscle Nerve 2022; 66:508-512. [PMID: 35778789 PMCID: PMC11684523 DOI: 10.1002/mus.27674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS Disease progression in myotonic dystrophy (DM) is marked by milestone events when functional thresholds are crossed. DM type 2 (DM2) is considered less severe than DM type 1 (DM1), but it is unknown whether this applies uniformly to all features. We compared the age-dependent risk for milestone events in DM1 and DM2 and tested for associations with age of onset and sex. METHODS We studied a large cohort of adult participants in a national registry of DM1 and DM2. Using annual surveys from participants, we ascertained milestone events for motor involvement (use of cane, walker, ankle brace, wheelchair, or ventilatory device), systemic involvement (diabetes, pacemaker, cancer), loss of employment due to DM, and death. RESULTS Mean follow-up of registry participants (929 DM1 and 222 DM2 patients) was 7 years. Disability and motor milestones occurred at earlier ages in DM1 than in DM2. In contrast, the risk of diabetes was higher and tended to occur earlier in DM2 (hazard ratio [HR], 0.56; P ≤ .001). In DM1, the milestone events tended to occur earlier, and life expectancy was reduced, when symptoms began at younger ages. In DM1, men were at greater risk for disability (HR, 1.34; P ≤ .01), use of ankle braces (HR, 1.41; P = .02), and diabetes (HR, 2.2; P ≤ .0001), whereas women were at greater risk for needing walkers (HR, 0.68; P = .001) or malignancy (HR, 0.66; P ≤ .01). DISCUSSION Milestone events recorded through registries can be used to assess long-term impact of DM in large cohorts. Except for diabetes, the age-related risk of milestone events is greater in DM1 than in DM2.
Collapse
Affiliation(s)
- Johanna I Hamel
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Michael P McDermott
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - James E Hilbert
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - William B Martens
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Elizabeth Luebbe
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Richard T Moxley
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
12
|
Howe SJ, Ladipus D, Hull M, Yeaw J, Stevenson T, Sampson JB. Healthcare resource utilization, total costs, and comorbidities among patients with myotonic dystrophy using U.S. insurance claims data from 2012 to 2019. Orphanet J Rare Dis 2022; 17:79. [PMID: 35197080 PMCID: PMC8867662 DOI: 10.1186/s13023-022-02241-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/06/2022] [Indexed: 10/17/2023] Open
Abstract
Background Myotonic dystrophy (DM) is a rare, inherited disorder with multi-systemic effects that impact the skeletal muscles, eyes, heart, skin and gastrointestinal, endocrine, respiratory, and central nervous systems. DM is divided into two subtypes: DM1 can present from early childhood through adulthood and also has a congenital form (cDM) while DM2 typically manifests during mid-adulthood. Both forms are progressive with no approved treatments, and unmet need for disease-modifying therapies remains high. This study interrogated health insurance claims data to explore the clinical experience, healthcare resource utilization (HCRU), and all-cause costs for DM. Results A total of 8541 patients with DM and 242 patients with cDM and their matched controls were selected from a database of over 200 million claimants. HCRU and all-cause costs, including pharmacy, outpatient, and inpatient services, were analyzed across four years in 12-month follow-up periods. Mean all-cause costs per DM patient were high in each of the four periods (range $14,640–$16,704) and showed a steady increase from 13 to 23 months on, while the control group mean costs declined from $9671 in the first 12 months after the index event, to approach the US population average ($5193) over time. For cDM, the highest mean costs were in the first 12-months ($66,496 vs. $2818 for controls), and remained high (above $17,944) across all subsequent periods, while control mean costs approached $0. For DM and cDM, HCRU was higher compared to controls across all study periods and all-cause healthcare costs were mostly driven by inpatient and outpatient encounters. Analysis of all diagnosis codes over the study period (comorbidities) demonstrated an elevated comorbidity profile consistent with the clinical profile of DM. Conclusions This study is among the first to utilize claims data to increase understanding of the clinical experience and health economic outcomes associated with DM. The markedly elevated HCRU patterns and comorbidity profile presented here add to the broad body of scientific and clinical knowledge on DM. These insights can inform clinical care and support the development of disease modifying and/or symptom-targeting therapies that address the multi-systemic, progressive nature of DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02241-9.
Collapse
Affiliation(s)
- Sarah J Howe
- Marigold Foundation, 7515 Flint Road SE, Calgary, AB, T2H 1G3, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Implications of Poly(A) Tail Processing in Repeat Expansion Diseases. Cells 2022; 11:cells11040677. [PMID: 35203324 PMCID: PMC8870147 DOI: 10.3390/cells11040677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Repeat expansion diseases are a group of more than 40 disorders that affect mainly the nervous and/or muscular system and include myotonic dystrophies, Huntington’s disease, and fragile X syndrome. The mutation-driven expanded repeat tract occurs in specific genes and is composed of tri- to dodeca-nucleotide-long units. Mutant mRNA is a pathogenic factor or important contributor to the disease and has great potential as a therapeutic target. Although repeat expansion diseases are quite well known, there are limited studies concerning polyadenylation events for implicated transcripts that could have profound effects on transcript stability, localization, and translation efficiency. In this review, we briefly present polyadenylation and alternative polyadenylation (APA) mechanisms and discuss their role in the pathogenesis of selected diseases. We also discuss several methods for poly(A) tail measurement (both transcript-specific and transcriptome-wide analyses) and APA site identification—the further development and use of which may contribute to a better understanding of the correlation between APA events and repeat expansion diseases. Finally, we point out some future perspectives on the research into repeat expansion diseases, as well as APA studies.
Collapse
|
14
|
Characteristics of myotonic dystrophy patients in the national registry of Japan. J Neurol Sci 2022; 432:120080. [PMID: 34923335 DOI: 10.1016/j.jns.2021.120080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022]
Abstract
Myotonic dystrophies (DM) are inherited autosomal dominant disorders affecting multiple organs. Currently available therapeutics for DM are limited; therefore, a patient registry is essential for therapeutic development and success of clinical trials targeting the diseases. We have developed a nationwide DM registry in Japan under the Registry of Muscular Dystrophy (Remudy). The registration process was patient-initiated; however, physicians certified the clinical information. The dataset includes all Naarden and TREAT-NMD core datasets and additional items covering major DM clinical features. As of March 2020, we enrolled 976 patients with genetically confirmed DM. The majority (99.9%) of these patients had DM1, with 11.4% having the congenital form. However, 1 patient had DM2. Upon classifying 969 symptomatic DM1 patients based on their age at onset, an earlier onset was associated with a longer CTG repeat length. Myotonia was the most frequent symptom, followed by hand disability, fatigue, and daytime sleepiness. The frequency of hand disabilities, constipation, and visual disturbances was higher for patients with congenital DM. According to a multiple regression analysis of objective clinical measurements related to prognosis and activities of daily living, CTG repeat length strongly influenced the grip strength, forced vital capacity, and QRS time in an electrocardiogram. However, the grip strength was only modestly related to disease duration. This report will shed light on the Japanese national DM registry, which has recruited a significant number of patients. The registry will provide invaluable data for planning clinical trials and improving the standard of care for patients.
Collapse
|
15
|
Ban R, Zhang Y, Li K, Shi Q. A Case of Myotonic Dystrophy Type I With Rimmed Vacuoles in Skeletal Muscle Pathology. J Clin Rheumatol 2021; 27:S771-S772. [PMID: 32732524 DOI: 10.1097/rhu.0000000000001496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Dystrophia myotonica type 1 (DM1) and DM2 are the most common muscular dystrophies. In both diseases, the skeletal muscle is the most severely affected. Additional symptoms are also involved in the eye, heart, brain, endocrine glands, gastrointestinal tract, skin, skeleton, and peripheral nerves. Skeletal muscle pathology is mainly manifested as myopathic changes including internal nuclei, sarcoplasmic masses, preferential type 1 fiber atrophy, and so on. Rimmed vacuoles (RVs) seen on muscle biopsy are areas of muscle destruction with an accumulation of autophagic vacuoles. However, there is no report about RVs in skeletal muscle of myotonic dystrophy patients. Here, we describe the first case of DM1 with RVs in skeletal muscle pathology.
Collapse
Affiliation(s)
- Rui Ban
- From the Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health
| | - Yutong Zhang
- Department of Neurology, Aerospace Central Hospital
| | - Ke Li
- Department of Neurology, the Second Medical Centre
| | - Qiang Shi
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Mateus T, Costa A, Viegas D, Marques A, Herdeiro MT, Rebelo S. Outcome measures frequently used to assess muscle strength in patients with myotonic dystrophy type 1: a systematic review. Neuromuscul Disord 2021; 32:99-115. [PMID: 35031191 DOI: 10.1016/j.nmd.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Measurement of muscle strength is fundamental for the management of patients with myotonic dystrophy type 1 (DM1). Nevertheless, guidance on this topic is somewhat limited due to heterogeneous outcome measures used. This systematic literature review aimed to summarize the most frequent outcome measures to assess muscle strength in patients with DM1. We searched on Pubmed, Web of Science and Embase databases. Observational studies using measures of muscle strength assessment in adult patients with DM1 were included. From a total of 80 included studies, 24 measured cardiac, 45 skeletal and 23 respiratory muscle strength. The most common method and outcome measures used to assess cardiac muscle strength were echocardiography and ejection fraction, for skeletal muscle strength were quantitative muscle test, manual muscle test and maximum isometric torque and medical research council and for respiratory muscle strength were manometry and maximal inspiratory and expiratory pressure. We successfully gathered the more consensual methods and measures to evaluate muscle strength in future clinical studies, particularly to test muscle strength response to treatments in patients with DM1. Future consensus on a set of measures to evaluate muscle strength (core outcome set), is important for these patients.
Collapse
Affiliation(s)
- Tiago Mateus
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Adriana Costa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Diana Viegas
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alda Marques
- Respiratory Research and Rehabilitation Laboratory - Lab3R, Institute of Biomedicine (iBiMED), School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
17
|
Hintze S, Mensel R, Knaier L, Schoser B, Meinke P. CTG-Repeat Detection in Primary Human Myoblasts of Myotonic Dystrophy Type 1. Front Neurosci 2021; 15:686735. [PMID: 34262431 PMCID: PMC8274452 DOI: 10.3389/fnins.2021.686735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by unstable CTG-repeat expansions in the DMPK gene. Tissue mosaicism has been described for the length of these repeat expansions. The most obvious affected tissue is skeletal muscle, making it the first target for therapy development. To date there is no approved therapy despite some existing approaches. Thus, there is the demand to further advance therapeutic developments, which will in return require several well-characterized preclinical tools and model systems. Here we describe a modified method to identify the CTG-repeat length in primary human myoblasts isolated from DM1 patients that requires less genomic DNA and avoids radioactive labeling. Using this method, we show that primary human DM1 myoblast cultures represent a population of cells with different CTG-repeat length. Comparing DNA from the identical muscle biopsy specimen, the range of CTG-repeat length in the myoblast culture is within the same range of the muscle biopsy specimen. In conclusion, primary human DM1 myoblast cultures are a well-suited model to investigate certain aspects of the DM1 pathology. They are a useful platform to perform first-line investigations of preclinical therapies.
Collapse
Affiliation(s)
- Stefan Hintze
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raphaela Mensel
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Knaier
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Meinke
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
18
|
Rehmann R, Schneider-Gold C, Froeling M, Güttsches AK, Rohm M, Forsting J, Vorgerd M, Schlaffke L. Diffusion Tensor Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J Neuromuscul Dis 2021; 8:949-962. [PMID: 34180419 DOI: 10.3233/jnd-210660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. OBJECTIVE To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. METHODS We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. RESULTS mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. DISCUSSION mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, University Hospital St. Josef, Ruhr-University Bochum, Bochum, Germany
| | - M Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A K Güttsches
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - J Forsting
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Peric S, Rakocevic-Stojanovic V, Meola G. Cerebral involvement and related aspects in myotonic dystrophy type 2. Neuromuscul Disord 2021; 31:681-694. [PMID: 34244019 DOI: 10.1016/j.nmd.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by CCTG repeats expansion in the first intron of the CNBP gene. In this review we focus on the brain involvement in DM2, including its pathogenic mechanisms, microstructural, macrostructural and functional brain changes, as well as the effects of all these impairments on patients' everyday life. We also try to understand how brain abnormalities in DM2 should be adequately measured and potentially treated. The most important pathogenetic mechanisms in DM2 are RNA gain-of-function and repeat-associated non-ATG (RAN) translation. One of the main neuroimaging findings in DM2 is the presence of diffuse periventricular white matter hyperintensity lesions (WMHLs). Brain atrophy has been described in DM2 patients, but it is not clear if it is mostly caused by a decrease of the white or gray matter volume. The most commonly reported specific cognitive symptoms in DM2 are dysexecutive syndrome, visuospatial and memory impairments. Fatigue, sleep-related disorders and pain are also frequent in DM2. The majority of key symptoms and signs in DM2 has a great influence on patients' daily lives, their psychological status, economic situation and quality of life.
Collapse
Affiliation(s)
- Stojan Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Aivazoglou LU, Guimarães JB, Link TM, Costa MAF, Cardoso FN, de Mattos Lombardi Badia B, Farias IB, de Rezende Pinto WBV, de Souza PVS, Oliveira ASB, de Siqueira Carvalho AA, Aihara AY, da Rocha Corrêa Fernandes A. MR imaging of inherited myopathies: a review and proposal of imaging algorithms. Eur Radiol 2021; 31:8498-8512. [PMID: 33881569 DOI: 10.1007/s00330-021-07931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the imaging modalities used to assess muscle changes in myopathies, to provide an overview of the inherited myopathies focusing on their patterns of muscle involvement in magnetic resonance imaging (MR), and to propose up-to-date imaging-based diagnostic algorithms that can help in the diagnostic workup. CONCLUSION Familiarization with the most common and specific patterns of muscular involvement in inherited myopathies is very important for radiologists and neurologists, as imaging plays a significant role in diagnosis and follow-up of these patients. KEY POINTS • Imaging is an increasingly important tool for diagnosis and follow-up in the setting of inherited myopathies. • Knowledge of the most common imaging patterns of muscle involvement in inherited myopathies is valuable for both radiologists and neurologists. • In this review, we present imaging-based algorithms that can help in the diagnostic workup of myopathies.
Collapse
Affiliation(s)
- Laís Uyeda Aivazoglou
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Julio Brandão Guimarães
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil. .,Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Maria Alice Freitas Costa
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Fabiano Nassar Cardoso
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Alzira Alves de Siqueira Carvalho
- Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC - Departamento de Neurociências, Av. Lauro Gomes, 2000, Santo André, SP, 09060-870, Brazil
| | - André Yui Aihara
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Artur da Rocha Corrêa Fernandes
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
21
|
Hartog L, Zhao J, Reynolds J, Brokamp G, Vilson F, Arnold WD, LoRusso S. Factors Influencing the Severity and Progression of Respiratory Muscle Dysfunction in Myotonic Dystrophy Type 1. Front Neurol 2021; 12:658532. [PMID: 33927684 PMCID: PMC8076608 DOI: 10.3389/fneur.2021.658532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory complications are the most common cause of death among patients with Myotonic Dystrophy type 1 (DM1), but the natural history of respiratory decline in DM1 patients is incompletely characterized and few predictors of the progression of respiratory dysfunction have been identified. To identify factors influencing the progression of respiratory dysfunction electronic medical records from 110 adult patients diagnosed with DM1 were reviewed along with data for respiratory symptoms and pulmonary function obtained from routine respiratory therapist clinical evaluations. At baseline, 70.9% had evidence of restrictive respiratory impairment. We examined various parameters of respiratory functional status, and found FVC (% predicted) correlated best with other measures of disease severity. Annual change in FVC was −1.42 (std error = 0.381). Greater CTG repeat size, higher MIRS rating, and longer disease duration were all correlated with lower baseline FVC but not with annual rate of change. Wide variability in clinical phenotype made determination of disease measures directly related to respiratory functional decline challenging.
Collapse
Affiliation(s)
- Leigh Hartog
- Department of Neurology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jing Zhao
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jerry Reynolds
- Department of Neurology, Ohio State University Medical Center, Columbus, OH, United States
| | - Gabrielle Brokamp
- Department of Neurology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Ferdinand Vilson
- Department of Neurology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - W David Arnold
- Department of Neurology, Ohio State University Medical Center, Columbus, OH, United States
| | - Samantha LoRusso
- Department of Neurology, Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
22
|
Olazabal-Herrero A, Bilbao-Arribas M, Carlevaris O, Sendino M, Varela-Martinez E, Jugo BM, Berra E, Rodriguez JA. The dystrophia myotonica WD repeat-containing protein DMWD and WDR20 differentially regulate USP12 deubiquitinase. FEBS J 2021; 288:5943-5963. [PMID: 33844468 DOI: 10.1111/febs.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
Despite its potential clinical relevance, the product of the DMWD (dystrophia myotonica, WD repeat containing) gene is a largely uncharacterized protein. The DMWD amino acid sequence is similar to that of WDR20, a known regulator of the USP12 and USP46 deubiquitinases (DUBs). Here, we apply a combination of in silico and experimental methods to investigate several aspects of DMWD biology. Molecular evolution and phylogenetic analyses reveal that WDR20 and DMWD, similar to USP12 and USP46, arose by duplication of a common ancestor during the whole genome duplication event in the vertebrate ancestor lineage. The analysis of public human gene expression datasets suggests that DMWD expression is positively correlated with USP12 expression in normal tissues and negatively correlated with WDR20 expression in tumors. Strikingly, a survey of the annotated interactome for DMWD and WDR20 reveals a largely nonoverlapping set of interactors for these proteins. Experimentally, we first confirmed that DMWD binds both USP12 and USP46 through direct coimmunoprecipitation of epitope-tagged proteins. We found that DMWD and WDR20 share the same binding interface in USP12, suggesting that their interaction with the DUB may be mutually exclusive. Finally, we show that both DMWD and WDR20 promote USP12 enzymatic activity, but they differentially modulate the subcellular localization of the DUB. Altogether, our findings suggest a model whereby mutually exclusive binding of DMWD and WDR20 to USP12 may lead to formation of deubiquitinase complexes with distinct subcellular localization, potentially targeting different substrate repertoires.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Onintza Carlevaris
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Berra
- Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERONC, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
23
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc 2020; 96:716-730. [PMID: 33269537 DOI: 10.1111/brv.12674] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most prevalent form of muscular dystrophy in adults and yet there are currently no treatment options. Although this disease causes multisystemic symptoms, it is mainly characterised by myopathy or diseased muscles, which includes muscle weakness, atrophy, and myotonia, severely affecting the lives of patients worldwide. On a molecular level, DM1 is caused by an expansion of CTG repeats in the 3' untranslated region (3'UTR) of the DM1 Protein Kinase (DMPK) gene which become pathogenic when transcribed into RNA forming ribonuclear foci comprised of auto complementary CUG hairpin structures that can bind proteins. This leads to the sequestration of the muscleblind-like (MBNL) family of proteins, depleting them, and the abnormal stabilisation of CUGBP Elav-like family member 1 (CELF1), enhancing it. Traditionally, DM1 research has focused on this RNA toxicity and how it alters MBNL and CELF1 functions as key splicing regulators. However, other proteins are affected by the toxic DMPK RNA and there is strong evidence that supports various signalling cascades playing an important role in DM1 pathogenesis. Specifically, the impairment of protein kinase B (AKT) signalling in DM1 increases autophagy, apoptosis, and ubiquitin-proteasome activity, which may also be affected in DM1 by AMP-activated protein kinase (AMPK) downregulation. AKT also regulates CELF1 directly, by affecting its subcellular localisation, and indirectly as it inhibits glycogen synthase kinase 3 beta (GSK3β), which stabilises the repressive form of CELF1 in DM1. Another kinase that contributes to CELF1 mis-regulation, in this case by hyperphosphorylation, is protein kinase C (PKC). Additionally, it has been demonstrated that fibroblast growth factor-inducible 14 (Fn14) is induced in DM1 and is associated with downstream signalling through the nuclear factor κB (NFκB) pathways, associating inflammation with this disease. Furthermore, MBNL1 and CELF1 play a role in cytoplasmic processes involved in DM1 myopathy, altering proteostasis and sarcomere structure. Finally, there are many other elements that could contribute to the muscular phenotype in DM1 such as alterations to satellite cells, non-coding RNA metabolism, calcium dysregulation, and repeat-associated non-ATG (RAN) translation. This review aims to organise the currently dispersed knowledge on the different pathways affected in DM1 and discusses the unexplored connections that could potentially help in providing new therapeutic targets in DM1 research.
Collapse
Affiliation(s)
- Lauren L Ozimski
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain.,Arthex Biotech, Catedrático Escardino, 9, Paterna, Valencia, 46980, Spain
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| |
Collapse
|
25
|
In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
MyomiRNAs and myostatin as physical rehabilitation biomarkers for myotonic dystrophy. Neurol Sci 2020; 41:2953-2960. [PMID: 32350671 DOI: 10.1007/s10072-020-04409-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
MiR-1 and myostatin are markers for muscle growth and regeneration. Myostatin has a key role in the regulation of muscle mass. Myotonic dystrophy type 1(DM1) patients have a disease-specific serum miRNA profile characterized by upregulation of miR-1, miR-206, miR-133a, and miR-133b (myomiRNAs).This study aims to evaluate the possible utility of myomiRs and myostatin as biomarkers of rehabilitation efficacy in DM1, supporting clinical outcomes that are often variable and related to the patient's clinical condition.In 9 genetically proven DM1 patients, we collected biological samples before (T0) and after (T1) exercise rehabilitation training as biological measurement. We measured serum myomiRNAs by qRT-PCR and myostatin by ELISA test. The clinical outcomes measures that we utilized during a 3-6 week rehabilitation controlled aerobic exercise period were the 6-min walking test (6MWT) that increased significantly of 53.5 m (p < 0.0004) and the 10-m walk test (10MWT) that decreased of 1.38 s.We observed, after physical rehabilitation, a significant downregulation of myomiRNAs and myostatin that occurred in parallel with the improvement of clinical functional outcome measures assessed as endurance and gait speed, respectively.The modulation of biomarkers may reflect muscle regeneration and increase muscle mass after aerobic exercise. miRNAs and myostatin might be considered as circulating biomarkers of DM1 rehabilitation. The efficacy of physical rehabilitation in counteracting molecular pathways responsible for muscle atrophy and disease progression and the role of these biomarkers in DM1 and other neuromuscular diseases warrant further investigation.
Collapse
|
27
|
Gois Beghini D, Iwao Horita S, Monteiro da Fonseca Cardoso L, Anastacio Alves L, Nagaraju K, Henriques-Pons A. A Promising Future for Stem-Cell-Based Therapies in Muscular Dystrophies-In Vitro and In Vivo Treatments to Boost Cellular Engraftment. Int J Mol Sci 2019; 20:ijms20215433. [PMID: 31683627 PMCID: PMC6861917 DOI: 10.3390/ijms20215433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Samuel Iwao Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902, USA.
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ) 21040-900, Brazil.
| |
Collapse
|
28
|
Glaubitz S, Schmidt K, Zschüntzsch J, Schmidt J. Myalgia in myositis and myopathies. Best Pract Res Clin Rheumatol 2019; 33:101433. [PMID: 31590993 DOI: 10.1016/j.berh.2019.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myalgia is a common symptom of various neuromuscular disorders: myalgia occurs in metabolic muscle diseases, inflammatory muscle diseases, dystrophic myopathies and myotonic muscle disorders. Myalgia leads to a significantly reduced quality of life. Other muscular symptoms that are present along with myalgia often provide the clue towards a diagnosis and include weakness, cramps and myotonia as well as the type of pain. In addition, extramuscular symptoms like an erythema in dermatomyositis can lead to the correct diagnosis. Basic diagnostic workup includes a detailed medical history, full neurologic assessment, laboratory tests, EMG and nerve conduction studies. Muscle imaging, genetic testing and muscle biopsy may be required to make a diagnosis. Whenever possible, treatment should aim to improve or correct the underlying cause for myalgia such as inflammation or hypothyroidism. Symptomatic therapy includes different avenues: Myotonia can be treated with mexiletine. Carbamazepine or phenytoin can be used in myotonic syndromes, particularly with muscle cramps. Pregabalin, gabapentin, or amitriptyline can be tried in conditions with myalgic pain. This review summarizes the symptoms, diagnostic strategies, and therapeutic approach in neuromuscular disorders that present with myalgia.
Collapse
Affiliation(s)
- Stefanie Glaubitz
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Karsten Schmidt
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Germany.
| |
Collapse
|
29
|
|
30
|
Kitsis EA, Napier F, Juthani V, Geyer HL. Association of Sjögren's syndrome with myotonic dystrophy type 1. BMJ Case Rep 2019; 12:12/8/e229611. [PMID: 31466972 DOI: 10.1136/bcr-2019-229611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 47-year-old woman presented with sicca symptoms, polyarthralgias, polymyalgias and dysphagia. She was found to have positive antinuclear, anti-SSA-Ro and anti-SSB-La antibodies. Slit lamp exam confirmed the presence of keratoconjunctivitis sicca, and the patient was diagnosed with Sjögren's syndrome. Three years later, she was referred for evaluation of gait instability associated with recent falls. On physical examination, the patient was found to have bilateral ptosis, percussion myotonia, distal upper and lower extremity weakness, and a steppage gait. Electromyography demonstrated electrical myotonia. Genetic testing revealed expanded CTG repeats (733 and 533) in the myotonic dystrophy type 1 (DM1) protein kinase gene, confirming the diagnosis of DM1. Dysphagia, pain and eye discomfort may occur in both Sjögren's syndrome and DM1, and in this case, may have delayed the diagnosis of muscular dystrophy.
Collapse
Affiliation(s)
- Elizabeth A Kitsis
- Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Fabreena Napier
- Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.,Neurology, Jacobi Medical Center, Bronx, USA
| | - Viral Juthani
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.,Ophthalmology, Montefiore Medical Center, Bronx, New York, USA
| | - Howard L Geyer
- Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.,Neurology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
31
|
Boland-Freitas R, Ng K. Assessment of small sensory fiber function in myotonic dystrophy type 1. Muscle Nerve 2019; 60:575-579. [PMID: 31443127 DOI: 10.1002/mus.26673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting the peripheral nervous system. However, studies evaluating somatic small fiber sensory nerve function, which may contribute to pain in DM1, are lacking. METHODS Using quantitative sensory testing of the hand and foot, we evaluated Aδ and C-fiber function. Of 20 adult DM1 patients recruited, 16 were analyzed. Their results were compared with those of 32 age- and sex-matched controls. RESULTS No DM1 patient had diabetes mellitus or clinical evidence of small fiber neuropathy. In DM1, hand (P < .01) and foot (P = 0.02) warm detection thresholds were higher than those of controls. Cool detection thresholds were lower in the foot (P < .001). CONCLUSIONS Subclinical small sensory fiber dysfunction occurs in DM1 patients without large fiber neuropathy. Further research with other modalities is required to characterize these disturbances as disease modifying therapies are developed.
Collapse
Affiliation(s)
- Robert Boland-Freitas
- Department of Neurology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Neurology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
32
|
Verma AK, Khan E, Bhagwat SR, Kumar A. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol 2019; 57:566-584. [DOI: 10.1007/s12035-019-01724-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
33
|
Anokhina VS, McAnany JD, Ciesla JH, Hilimire TA, Santoso N, Miao H, Miller BL. Enhancing the ligand efficiency of anti-HIV compounds targeting frameshift-stimulating RNA. Bioorg Med Chem 2019; 27:2972-2977. [PMID: 31101492 DOI: 10.1016/j.bmc.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022]
Abstract
Ribosomal frameshifting, a process whereby a translating ribosome is diverted from one reading frame to another on a contiguous mRNA, is an important regulatory mechanism in biology and an opportunity for therapeutic intervention in several human diseases. In HIV, ribosomal frameshifting controls the ratio of Gag and Gag-Pol, two polyproteins critical to the HIV life cycle. We have previously reported compounds able to selectively bind an RNA stemloop within the Gag-Pol mRNA; these compounds alter the production of Gag-Pol in a manner consistent with increased frameshifting. Importantly, they also display antiretroviral activity in human T-cells. Here, we describe new compounds with significantly reduced molecular weight, but with substantially maintained affinity and anti-HIV activity. These results suggest that development of more "ligand efficient" enhancers of ribosomal frameshifting is an achievable goal.
Collapse
Affiliation(s)
- Viktoriya S Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, United States
| | - John D McAnany
- Department of Chemistry, University of Rochester, Rochester, NY 14642, United States
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, United States
| | - Thomas A Hilimire
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, United States
| | - Netty Santoso
- Department of Biostatistics, University of Rochester, Rochester, NY 14642, United States
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Benjamin L Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, United States; Department of Dermatology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
34
|
Suh MR, Kim DH, Jung J, Kim B, Lee JW, Choi WA, Kang SW. Clinical implication of maximal voluntary ventilation in myotonic muscular dystrophy. Medicine (Baltimore) 2019; 98:e15321. [PMID: 31045770 PMCID: PMC6504256 DOI: 10.1097/md.0000000000015321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with myotonic muscular dystrophy type 1 (DM1) tend to exhibit earlier respiratory insufficiency than patients with other neuromuscular diseases at similar or higher forced vital capacity (FVC). This study aimed to analyze several pulmonary function parameters to determine which factor contributes the most to early hypercapnia in patients with DM1.We analyzed ventilation status monitoring, pulmonary function tests (including FVC, maximal voluntary ventilation [MVV], and maximal inspiratory and expiratory pressure), and polysomnography in subjects with DM1 who were admitted to a single university hospital. The correlation of each parameter with hypercapnia was determined. Subgroup analysis was also performed by dividing the subjects into 2 subgroups according to usage of mechanical ventilation.Final analysis included 50 patients with a mean age of 42.9 years (standard deviation = 11.1), 46.0% of whom were male. The hypercapnia was negatively correlated with MVV, FVC, forced expiratory volume in 1 second (FEV1), and their ratios to predicted values in subjects with myotonic muscular dystrophy type 1. At the same partial pressure of carbon dioxide, the ratio to the predicted value was lowest for MVV, then FEV1, followed by FVC. Moreover, the P values for differences in MVV and its ratio to the predicted value between ventilator users and nonusers were the lowest.When screening ventilation failure in patients with DM1, MVV should be considered alongside other routinely measured parameters.
Collapse
Affiliation(s)
- Mi Ri Suh
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, GyeongGi-do
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, GyeongGi-do
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- The Graduate School, Yonsei University College of Medicine, Seoul
| | - Dong Hyun Kim
- Department of Physical Medicine and Rehabilitation, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Jiho Jung
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| | - Bitnarae Kim
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
- Department of Physical Therapy, Graduate School of Yonsei University, Gangwon-do
| | - Jang Woo Lee
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| |
Collapse
|
35
|
Guglielmi V, Carton F, Vattemi G, Arpicco S, Stella B, Berlier G, Marengo A, Boschi F, Malatesta M. Uptake and intracellular distribution of different types of nanoparticles in primary human myoblasts and myotubes. Int J Pharm 2019; 560:347-356. [PMID: 30797075 DOI: 10.1016/j.ijpharm.2019.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
The use of nanoparticles as drug carriers in the field of skeletal muscle diseases has been poorly addressed and the interaction of nanoparticles with skeletal muscle cells has been investigated almost exclusively on C2C12 murine myoblasts. In this study we investigated the effects poly(lactide-co-glycolide) nanoparticles, mesoporous silica nanoparticles and liposomes, on the viability of primary human myoblasts and analyzed their cellular uptake and intracellular distribution in both primary human myoblasts and myotubes. Our data demonstrate that poly(lactide-co-glycolide) nanoparticles do not negatively affect myoblasts viability, contrarily to mesoporous silica nanoparticles and liposomes that induce a decrease in cell viability at the highest doses and longest incubation time. Poly(lactide-co-glycolide) nanoparticles and mesoporous silica nanoparticles are internalized by endocytosis, poly(lactide-co-glycolide) nanoparticles undergo endosomal escape whereas mesoporous silica nanoparticles always occur within vacuoles. Liposomes were rarely observed within the cells. The uptake of all tested nanoparticles was less prominent in primary human myotubes as compared to myoblasts. Our findings represent the first step toward the characterization of the interaction between nanoparticles and primary human muscle cells and suggest that poly(lactide-co-glycolide) nanoparticles might find an application for drug delivery to skeletal muscle.
Collapse
Affiliation(s)
- V Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - F Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy
| | - G Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, P.le L.A. Scuro, 10 - 37134 Verona, Italy
| | - S Arpicco
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - B Stella
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - G Berlier
- Department of Chemistry and NIS Centre, University of Torino, Via P. Giuria, 7 - 10125 Torino, Italy
| | - A Marengo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria, 9 - 10125 Torino, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie, 15 - 37134 Verona, Italy
| | - M Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8 - 37134 Verona, Italy.
| |
Collapse
|
36
|
Sleep Complaints, Sleep and Breathing Disorders in Myotonic Dystrophy Type 2. Curr Neurol Neurosci Rep 2019; 19:9. [DOI: 10.1007/s11910-019-0924-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Mammen AL, Roda RH, Leung DG. Myopathy: Recent Progress, Current Therapies, and Future Directions. Neurotherapeutics 2018; 15:837-839. [PMID: 30443717 PMCID: PMC6277290 DOI: 10.1007/s13311-018-00688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1141, Building 50, MSC 8024, Bethesda, MD, 20892, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris G Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Genetic Muscle Disorders at Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|