1
|
Li H, Jiang RY, Tang YJ, Ling C, Liu F, Xu JJ. Lnc-Pim1 Promotes Neurite Outgrowth and Regeneration of Neuron-Like Cells Following ACR-Induced Neuronal Injury. J Cell Biochem 2025; 126:e30659. [PMID: 39370596 DOI: 10.1002/jcb.30659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Decreased regenerative capacity of central nervous system neurons is the main cause for failure of damaged neuron regeneration and functional recovery. Long noncoding RNAs (lncRNAs) are abundant in mammalian transcriptomes, and many time- and tissue-specific lncRNAs are thought to be closely related to specific biological functions. The promoting effect of Pim-1 gene on neural differentiation and regeneration has been documented, but the effect and mechanism of its neighbor gene Lnc-Pim1 in regulating the response of central neurons to injury remain unclear. RT-PCR in this study demonstrated that the expression of Lnc-Pim1 was upregulated in acrylamide (ACR)-induced neuronal injury. FISH and nucleus-cytoplasmic assay demonstrated that Lnc-Pim1 was mainly expressed in the neuron cytoplasm, with a small amount in the nucleus. Western blot analysis proved that Lnc-Pim1 overexpression induced by the lentivirus vector could promote neurite outgrowth in Neuro-2a cells by activating the Erk1/2 signal pathway, and improve neurite regeneration of injured neurons by upregulating GAP-43 and β-Ⅲ tubulin protein expression. However, silencing Lnc-Pim1 expression by interfering RNA could effectively downregulate the GAP-43 and β-Ⅲ tubulin protein expression, and inhibit neurite growth of neurons. In addition, CHIRP-MS was performed to identify several potential targets of Lnc-Pim1 involved in the regulation of neurite regeneration of injured neurons. In conclusion, our study demonstrated that Lnc-Pim1 is a potential lnc-RNA, playing an important role in regulating central nerve regeneration.
Collapse
Affiliation(s)
- He Li
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Ruo Yu Jiang
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Ya Jie Tang
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Cong Ling
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Jia Jun Xu
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
2
|
Schaeffer J, Belin S. Axon regeneration: an issue of translation. C R Biol 2024; 347:249-258. [PMID: 39665232 DOI: 10.5802/crbiol.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
In the mammalian central nervous system (CNS), adult neurons fail to regenerate spontaneously upon axon injury, which leads to a permanent and irreversible loss of neuronal functions. For more than 15 years, much effort was invested to unlock axon regrowth programs based on extensive transcriptomic characterization. However, it is now well described that mRNA and protein levels correlate only partially in cells, and that the transcription process (from DNA to mRNA) may not directly reflect protein expression. Conversely, the translation process (from mRNA to protein) provides an additional layer of gene regulation. This aspect has been overlooked in CNS regeneration. In this review, we discuss the limitations of transcriptomic approaches to promote CNS regeneration and we provide the rationale to investigate translational regulation in this context, and notably the regulatory role of the translational complex. Finally, we summarize our and others’ recent findings showing how variations in the translational complex composition regulate selective (mRNA-specific) translation, thereby controlling CNS axon regrowth.
Collapse
|
3
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Palmisano I, Liu T, Gao W, Zhou L, Merkenschlager M, Mueller F, Chadwick J, Toscano Rivalta R, Kong G, King JWD, Al-jibury E, Yan Y, Carlino A, Collison B, De Vitis E, Gongala S, De Virgiliis F, Wang Z, Di Giovanni S. Three-dimensional chromatin mapping of sensory neurons reveals that promoter-enhancer looping is required for axonal regeneration. Proc Natl Acad Sci U S A 2024; 121:e2402518121. [PMID: 39254997 PMCID: PMC11420198 DOI: 10.1073/pnas.2402518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, FL33124-4245
| | - Wei Gao
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Luming Zhou
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Matthias Merkenschlager
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Franziska Mueller
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Jessica Chadwick
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Rebecca Toscano Rivalta
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Guiping Kong
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - James W. D. King
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Ediem Al-jibury
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Yuyang Yan
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Alessandro Carlino
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Bryce Collison
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Eleonora De Vitis
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Sree Gongala
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Francesco De Virgiliis
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, FL33124-4245
| | - Simone Di Giovanni
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| |
Collapse
|
5
|
Palmisano I, Liu T, Gao W, Zhou L, Merkenschlager M, Müller F, Chadwick J, Rivolta RT, Kong G, King JWD, Al-jibury E, Yan Y, Carlino A, Collison B, De Vitis E, Gongala S, De Virgiliis F, Wang Z, Di Giovanni S. Three-dimensional chromatin mapping of sensory neurons reveals that cohesin-dependent genomic domains are required for axonal regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597974. [PMID: 38895406 PMCID: PMC11185766 DOI: 10.1101/2024.06.09.597974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression programme at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C and RNA-seq. We find that cohesin is required for the full induction of the regenerative transcriptional program, by organising 3D genomic domains required for the activation of regenerative genes. Importantly, loss of cohesin results in disruption of chromatin architecture at regenerative genes and severely impaired nerve regeneration. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent chromatin interactions in neuronal regeneration.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, 330M Ungar Building, 1365 Memorial Drive, Coral Gables, FL 33124-4245 Miami, FL, USA
| | - Wei Gao
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Luming Zhou
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | | | - Franziska Müller
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Jessica Chadwick
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Rebecca Toscano Rivolta
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Guiping Kong
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - James WD King
- MRC LMS, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ediem Al-jibury
- MRC LMS, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Yuyang Yan
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Alessandro Carlino
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Bryce Collison
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Eleonora De Vitis
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Sree Gongala
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Francesco De Virgiliis
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Zheng Wang
- Department of Computer Science, University of Miami, 330M Ungar Building, 1365 Memorial Drive, Coral Gables, FL 33124-4245 Miami, FL, USA
| | - Simone Di Giovanni
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
6
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
7
|
Scholpa NE. Role of DNA methylation during recovery from spinal cord injury with and without β 2-adrenergic receptor agonism. Exp Neurol 2023; 368:114494. [PMID: 37488045 DOI: 10.1016/j.expneurol.2023.114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Daily treatment with the FDA-approved β2-adrenergic receptor agonist formoterol beginning 8 h after severe spinal cord injury (SCI) induces mitochondrial biogenesis and improves recovery in mice. We observed decreased DNA methyltransferase (DNMT) expression, global DNA methylation and methylation of the mitochondrial genes PGC-1α and NDUFS1 in the injury site of formoterol-treated mice 1 DPI, but this effect was lost by 7 DPI. To investigate the role of DNA methylation on recovery post-SCI, injured mice were treated daily with formoterol or vehicle, plus the DNMT inhibitor decitabine (DAC) on days 7-9. While DAC had no apparent effect on formoterol-induced recovery, mice treated with vehicle plus DAC exhibited increased BMS scores compared to vehicle alone beginning 15 DPI, reaching a degree of functional recovery similar to that of formoterol-treated mice by 21 DPI. Furthermore, DAC treatment increased injury site mitochondrial protein expression in vehicle-treated mice to levels comparable to that of formoterol-treated mice. The effect of DNMT inhibition on pain response with and without formoterol was assessed following moderate SCI. While all injured mice not treated with DAC displayed thermal hyperalgesia by 21 DPI, mice treated with formoterol exhibited decreased thermal hyperalgesia compared to vehicle-treated mice by 35 DPI. Injured mice treated with DAC, regardless of formoterol treatment, did not demonstrate thermal hyperalgesia at any time point assessed. Although these data do not suggest enhanced formoterol-induced recovery with DNMT inhibition, our findings indicate the importance of DNA methylation post-SCI and support both DNMT inhibition and formoterol as potential therapeutic avenues.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
8
|
Li Z, Jiang Z, Lu L, Liu Y. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics 2023; 15:pharmaceutics15010210. [PMID: 36678839 PMCID: PMC9862045 DOI: 10.3390/pharmaceutics15010210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Physical injuries and neurodegenerative diseases often lead to irreversible damage to the organizational structure of the central nervous system (CNS) and peripheral nervous system (PNS), culminating in physiological malfunctions. Investigating these complex and diverse biological processes at the macro and micro levels will help to identify the cellular and molecular mechanisms associated with nerve degeneration and regeneration, thereby providing new options for the development of new therapeutic strategies for the functional recovery of the nervous system. Due to their distinct advantages, modern microfluidic platforms have significant potential for high-throughput cell and organoid cultures in vitro, the synthesis of a variety of tissue engineering scaffolds and drug carriers, and observing the delivery of drugs at the desired speed to the desired location in real time. In this review, we first introduce the types of nerve damage and the repair mechanisms of the CNS and PNS; then, we summarize the development of microfluidic platforms and their application in drug carriers. We also describe a variety of damage models, tissue engineering scaffolds, and drug carriers for nerve injury repair based on the application of microfluidic platforms. Finally, we discuss remaining challenges and future perspectives with regard to the promotion of nerve injury repair based on engineered microfluidic platform technology.
Collapse
|
9
|
Kim CK, Won JS, An JY, Lee HJ, Nam AJ, Nam H, Lee JY, Lee KH, Lee SH, Joo KM. Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1). Int J Mol Sci 2022; 23:ijms23084267. [PMID: 35457084 PMCID: PMC9029183 DOI: 10.3390/ijms23084267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present.
Collapse
Affiliation(s)
- Chung Kwon Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Jeong-Seob Won
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Jae Yeol An
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Healthcare Division, Partners Investment Co., Ltd., Seoul 06152, Korea
| | - Ho Jin Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Ah-Jin Nam
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyun Nam
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Kyung-Hoon Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Sun-Ho Lee
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| | - Kyeung Min Joo
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| |
Collapse
|
10
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
11
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Enhanced Nerve Regeneration by Exosomes Secreted by Adipose-Derived Stem Cells with or without FK506 Stimulation. Int J Mol Sci 2021; 22:ijms22168545. [PMID: 34445251 PMCID: PMC8395161 DOI: 10.3390/ijms22168545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.
Collapse
|
13
|
Jeon Y, Shin JE, Kwon M, Cho E, Cavalli V, Cho Y. In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves. Mol Neurobiol 2021; 58:750-760. [PMID: 33011858 DOI: 10.1007/s12035-020-02155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Neurons are vulnerable to injury, and failure to activate self-protective systems after injury leads to neuronal death. However, sensory neurons in dorsal root ganglions (DRGs) mostly survive and regenerate their axons. To understand the mechanisms of the neuronal injury response, we analyzed the injury-responsive transcriptome and found that Stc2 is immediately upregulated after axotomy. Stc2 is required for axon regeneration in vivo and in vitro, indicating that Stc2 is a neuronal factor regulating axonal injury response. The application of the secreted stanniocalcin 2 to injured DRG neurons promotes regeneration. Stc2 thus represents a potential secretory protein with a feedback function regulating regeneration. Finally, the in vivo gene delivery of STC2 increases regenerative growth after injury in peripheral nerves in mice. These results suggest that Stc2 is an injury-responsive gene required for axon regeneration and a potential target for developing therapeutic applications.
Collapse
Affiliation(s)
- Yewon Jeon
- Department of Life Sciences, Lab of Axon Regeneration & Degeneration, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Eun Shin
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Minjae Kwon
- Department of Life Sciences, Lab of Axon Regeneration & Degeneration, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eunhye Cho
- Department of Life Sciences, Lab of Axon Regeneration & Degeneration, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yongcheol Cho
- Department of Life Sciences, Lab of Axon Regeneration & Degeneration, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Rigoni M, Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells 2020; 9:E1768. [PMID: 32722089 PMCID: PMC7464993 DOI: 10.3390/cells9081768] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The peripheral nervous system has retained through evolution the capacity to repair and regenerate after assault from a variety of physical, chemical, or biological pathogens. Regeneration relies on the intrinsic abilities of peripheral neurons and on a permissive environment, and it is driven by an intense interplay among neurons, the glia, muscles, the basal lamina, and the immune system. Indeed, extrinsic signals from the milieu of the injury site superimpose on genetic and epigenetic mechanisms to modulate cell intrinsic programs. Here, we will review the main intrinsic and extrinsic mechanisms allowing severed peripheral axons to re-grow, and discuss some alarm mediators and pro-regenerative molecules and pathways involved in the process, highlighting the role of Schwann cells as central hubs coordinating multiple signals. A particular focus will be provided on regeneration at the neuromuscular junction, an ideal model system whose manipulation can contribute to the identification of crucial mediators of nerve re-growth. A brief overview on regeneration at sensory terminals is also included.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Myology Center (Cir-Myo), University of Padua, 35129 Padua, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| |
Collapse
|
15
|
Lee J, Shin JE, Lee B, Kim H, Jeon Y, Ahn SH, Chi SW, Cho Y. The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci U S A 2020; 117:15955-15966. [PMID: 32554499 PMCID: PMC7355016 DOI: 10.1073/pnas.1920829117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Axon regeneration is regulated by a neuron-intrinsic transcriptional program that is suppressed during development but that can be reactivated following peripheral nerve injury. Here we identify Prom1, which encodes the stem cell marker prominin-1, as a regulator of the axon regeneration program. Prom1 expression is developmentally down-regulated, and the genetic deletion of Prom1 in mice inhibits axon regeneration in dorsal root ganglion (DRG) cultures and in the sciatic nerve, revealing the neuronal role of Prom1 in injury-induced regeneration. Elevating prominin-1 levels in cultured DRG neurons or in mice via adeno-associated virus-mediated gene delivery enhances axon regeneration in vitro and in vivo, allowing outgrowth on an inhibitory substrate. Prom1 overexpression induces the consistent down-regulation of cholesterol metabolism-associated genes and a reduction in cellular cholesterol levels in a Smad pathway-dependent manner, which promotes axonal regrowth. We find that prominin-1 interacts with the type I TGF-β receptor ALK4, and that they synergistically induce phosphorylation of Smad2. These results suggest that Prom1 and cholesterol metabolism pathways are possible therapeutic targets for the promotion of neural recovery after injury.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Jung Eun Shin
- Department of Molecular Neuroscience, Dong-A University College of Medicine, 49201 Busan, Republic of Korea
| | - Bohm Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yewon Jeon
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea;
| |
Collapse
|
16
|
Smith TP, Sahoo PK, Kar AN, Twiss JL. Intra-axonal mechanisms driving axon regeneration. Brain Res 2020; 1740:146864. [PMID: 32360100 DOI: 10.1016/j.brainres.2020.146864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
17
|
Seira O, Wang W, Lee S, Roskams J, Tetzlaff W. HDAC inhibition leads to age-dependent opposite regenerative effect upon PTEN deletion in rubrospinal axons after SCI. Neurobiol Aging 2020; 90:99-109. [PMID: 32171589 DOI: 10.1016/j.neurobiolaging.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 01/26/2023]
Abstract
Epigenetic changes associated with aging have been linked to functional and cognitive deficits in the adult CNS. Histone acetylation is involved in the control of the transcription of plasticity and regeneration-associated genes. The intrinsic axon growth capacity in the CNS is negatively regulated by phosphatase and tensin homolog (Pten). Inhibition of Pten is an effective method to stimulate axon growth following an injury to the optic nerve, corticospinal tract (CST), and rubrospinal tract (RST). Our laboratory has previously demonstrated that the deletion of Pten in aged animals diminishes the regenerative capacity in rubrospinal neurons. We hypothesize that changes in the chromatin structure might contribute to this age-associated decline. Here, we assessed whether Trichostatin A (TSA), a histone deacetylases (HDACs) inhibitor, reverses the decline in regeneration in aged Ptenf/f mice. We demonstrate that HDAC inhibition induces changes in the expression of GAP43 in both young and aged Ptenf/f mice. The regenerative capacity of the RST did not improve significantly in young mice, neither their motor function on the horizontal ladder or cylinder test after TSA treatment for 7 days. Interestingly, TSA treatment in the aged mice worsened their motor function deficits, suggesting that the systemic treatment with TSA might have an overall adverse effect on motor recovery after SCI in aged animals.
Collapse
Affiliation(s)
- Oscar Seira
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada; Department of Zoology, University of British Columbia (UBC), Vancouver, British Columbia, Canada.
| | - Wenchun Wang
- Department of Rehabilitation, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Sharon Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Jane Roskams
- Life Sciences Centre and Center for Brain Health, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Neurosurgery University of Washington, Seattle, WA, USA
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada; Department of Zoology, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Zhang BY, Chang PY, Zhu QS, Zhu YH. Decoding epigenetic codes: new frontiers in exploring recovery from spinal cord injury. Neural Regen Res 2020; 15:1613-1622. [PMID: 32209760 PMCID: PMC7437595 DOI: 10.4103/1673-5374.276323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury that results in severe neurological disability is often incurable. The poor clinical outcome of spinal cord injury is mainly caused by the failure to reconstruct the injured neural circuits. Several intrinsic and extrinsic determinants contribute to this inability to reconnect. Epigenetic regulation acts as the driving force for multiple pathological and physiological processes in the central nervous system by modulating the expression of certain critical genes. Recent studies have demonstrated that post-SCI alteration of epigenetic landmarks is strongly associated with axon regeneration, glial activation and neurogenesis. These findings not only establish a theoretical foundation for further exploration of spinal cord injury, but also provide new avenues for the clinical treatment of spinal cord injury. This review focuses on the epigenetic regulation in axon regeneration and secondary spinal cord injury. Together, these discoveries are a selection of epigenetic-based prognosis biomarkers and attractive therapeutic targets in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Bo-Yin Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiotherapy, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing-San Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu-Hang Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | -
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
19
|
Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons. Nat Neurosci 2019; 22:1913-1924. [PMID: 31591560 DOI: 10.1038/s41593-019-0490-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.
Collapse
|
20
|
Wahane S, Halawani D, Zhou X, Zou H. Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Front Genet 2019; 10:640. [PMID: 31354788 PMCID: PMC6629966 DOI: 10.3389/fgene.2019.00640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Injury to the nervous system triggers a multicellular response in which epigenetic mechanisms play an important role in regulating cell type-specific transcriptional changes. Here, we summarize recent progress in characterizing neuronal intrinsic and extrinsic chromatin reconfigurations and epigenetic changes triggered by axonal injury that shape neuroplasticity and glial functions. We specifically discuss regeneration-associated transcriptional modules comprised of transcription factors and epigenetic regulators that control axon growth competence. We also review epigenetic regulation of neuroinflammation and astroglial responses that impact neural repair. These advances provide a framework for developing epigenetic strategies to maximize adaptive alterations while minimizing maladaptive stress responses in order to enhance axon regeneration and achieve functional recovery after injury.
Collapse
Affiliation(s)
- Shalaka Wahane
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dalia Halawani
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiang Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Zou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res 2019; 71:57-67. [DOI: 10.1016/j.preteyeres.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
|
22
|
Abstract
Traumatic brain and spinal cord injuries cause permanent disability. Although progress has been made in understanding the cellular and molecular mechanisms underlying the pathophysiological changes that affect both structure and function after injury to the brain or spinal cord, there are currently no cures for either condition. This may change with the development and application of multi-layer omics, new sophisticated bioinformatics tools, and cutting-edge imaging techniques. Already, these technical advances, when combined, are revealing an unprecedented number of novel cellular and molecular targets that could be manipulated alone or in combination to repair the injured central nervous system with precision. In this review, we highlight recent advances in applying these new technologies to the study of axon regeneration and rebuilding of injured neural circuitry. We then discuss the challenges ahead to translate results produced by these technologies into clinical application to help improve the lives of individuals who have a brain or spinal cord injury.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neuroscience and Discovery Themes Initiative, College of Medicine, Ohio State University, Columbus, Ohio, 43210, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
23
|
Cortes M, Alias GG, Tansey KE. A "Snapshot" of the Advances in SCI Therapeutics. Neurotherapeutics 2018; 15:527-528. [PMID: 30083985 PMCID: PMC6095792 DOI: 10.1007/s13311-018-0654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mar Cortes
- Weill Cornell Medicine, Rehabilitation Medicine Department, Burke Neurological Institute, 785 Mamaroneck avenue, White Plains, NY, 10605, USA
| | - Guillermo Garcia Alias
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Badalona, Spain
| | - Keith E Tansey
- Neurosurgery and Neurobiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- NeuroRobotics Lab, Methodist Rehabilitation Center, Jackson, MS, 39216, USA.
- Spinal Cord Injury Clinic, Veterans Administration Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|