1
|
Golderman V, Ben-Shimon M, Maggio N, Dori A, Gofrit SG, Berkowitz S, Qassim L, Artan-Furman A, Zeimer T, Chapman J, Shavit-Stein E. Factor VII, EPCR, aPC Modulators: novel treatment for neuroinflammation. J Neuroinflammation 2022; 19:138. [PMID: 35690769 PMCID: PMC9187898 DOI: 10.1186/s12974-022-02505-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background Inflammation and coagulation are linked and pathogenic in neuroinflammatory diseases. Protease-activated receptor 1 (PAR1) can be activated both by thrombin, inducing increased inflammation, and activated protein C (aPC), inducing decreased inflammation. Modulation of the aPC-PAR1 pathway may prevent the neuroinflammation associated with PAR1 over-activation. Methods We synthesized a group of novel molecules based on the binding site of FVII/aPC to the endothelial protein C receptor (EPCR). These molecules modulate the FVII/aPC-EPCR pathway and are therefore named FEAMs—Factor VII, EPCR, aPC Modulators. We studied the molecular and behavioral effects of a selected FEAM in neuroinflammation models in-vitro and in-vivo. Results In a lipopolysaccharide (LPS) induced in-vitro model, neuroinflammation leads to increased thrombin activity compared to control (2.7 ± 0.11 and 2.23 ± 0.13 mU/ml, respectively, p = 0.01) and decreased aPC activity (0.57 ± 0.01 and 1.00 ± 0.02, respectively, p < 0.0001). In addition, increased phosphorylated extracellular regulated kinase (pERK) (0.99 ± 0.13, 1.39 ± 0.14, control and LPS, p < 0.04) and protein kinase B (pAKT) (1.00 ± 0.09, 2.83 ± 0.81, control and LPS, p < 0.0002) levels indicate PAR1 overactivation, which leads to increased tumor necrosis factor-alpha (TNF-α) level (1.00 ± 0.04, 1.35 ± 0.12, control and LPS, p = 0.02). In a minimal traumatic brain injury (mTBI) induced neuroinflammation in-vivo model in mice, increased thrombin activity, PAR1 activation, and TNF-α levels were measured. Additionally, significant memory impairment, as indicated by a lower recognition index in the Novel Object Recognition (NOR) test and Y-maze test (NOR: 0.19 ± 0.06, -0.07 ± 0.09, p = 0.03. Y-Maze: 0.50 ± 0.03, 0.23 ± 0.09, p = 0.02 control and mTBI, respectively), as well as hypersensitivity by hot-plate latency (16.6 ± 0.89, 12.8 ± 0.56 s, control and mTBI, p = 0.01), were seen. FEAM prevented most of the molecular and behavioral negative effects of neuroinflammation in-vitro and in-vivo, most likely through EPCR-PAR1 interactions. Conclusion FEAM is a promising tool to study neuroinflammation and a potential treatment for a variety of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Ben-Shimon
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lamis Qassim
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avital Artan-Furman
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel
| | - Talya Zeimer
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel.,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Joseph Sagol Neuroscience Center, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Robert and Martha Harden Chair in Mental and Neurological Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, 52621, Ramat Gan, Israel. .,Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
2
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
4
|
Tu X, Wang M, Liu Y, Zhao W, Ren X, Li Y, Liu H, Gu Z, Jia H, Liu J, Li G, Luo L. Pretreatment of Grape Seed Proanthocyanidin Extract Exerts Neuroprotective Effect in Murine Model of Neonatal Hypoxic-ischemic Brain Injury by Its Antiapoptotic Property. Cell Mol Neurobiol 2019; 39:953-961. [PMID: 31147852 PMCID: PMC11457837 DOI: 10.1007/s10571-019-00691-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Grape seed proanthocyanidin extract (GSPE), an active component extracted from the grape, has been reported to demonstrate antioxidant, anti-inflammatory, anticancer, and antiapoptosis effects. However, little is known about the role of GSPE on neonatal hypoxic-ischemic (HI) brain injury. The aim of this study was to evaluate the neuroprotective effect of GSPE pretreatment on neonatal HI brain injury in mice. A modified Rice-Vannucci method was performed to induce neonatal HI brain injury in the 7-day-old mouse pups pretreated with GSPE or vehicle. The infarct volumes were determined by TTC staining. TUNEL staining was used to detect cells apoptosis, and the expressions of apoptosis-related proteins: bax, bcl2, and cleaved caspase-3 were assayed by Western blot. Behavioral tests were also conducted to assess the functional recovery after injury. We showed that the brain damage and neurobehavioral outcomes improvement was observed in GSPE pretreated group. GSPE was proved to suppress apoptosis through inhibition of bax and cleaved caspase-3 expression. It demonstrates that GSPE could alleviate brain damage maybe through its antiapoptotic activity in a neonatal HI brain injury model, and GSPE has the potential to be a new drug for effective prevention of this disorder.
Collapse
Affiliation(s)
- Xing Tu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Yilin Liu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wenyan Zhao
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuxin Ren
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yuanjun Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hongqing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Ziting Gu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hui Jia
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Liu
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guoying Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
- Guangdong Medical Association, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|