1
|
Wallin J, Forsberg A, Svenningsson P. Effects of Montelukast on Neuroinflammation in Parkinson's Disease: An Open Label Safety and Tolerability Trial with CSF Markers and [ 11C]PBR28 PET. Mov Disord 2025; 40:739-744. [PMID: 39912596 PMCID: PMC12006882 DOI: 10.1002/mds.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Dysregulated leukotriene signaling is proposed to be involved in pathogenesis of Parkinson's disease (PD). OBJECTIVE The objective was to examine the safety and tolerability of montelukast, a cysteinyl-leukotriene receptor1 and GPR17 antagonist, in patients with PD. Secondary outcomes were target engagement, effects on PD signs/symptoms, and central neuroinflammation. METHODS Fifteen PD patients were recruited to a 12-week open-label trial of 20 mg bi-daily montelukast treatment. Patients underwent ratings with the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS), the Montreal Cognitive Assessment (MoCA), Beck's Depression Inventory (BDI), Parkinson's Disease Questionnaire-39 (PDQ-39), [11C]PBR28-PET, and lumbar punctures before and during montelukast treatment. RESULTS All patients completed the study. Three patients reported loose stool. No serious adverse events related to treatment were reported. MDS-UPDRS-Total scores improved by 6.9 points. Very low levels of montelukast were detected in all cerebrospinal fluid (CSF) samples and resulted in a reduction in inflammation/metabolism markers. [11C]PBR28 binding was lowered in high, but not mixed, affinity binders after montelukast. CONCLUSIONS Montelukast crosses the blood-brain barrier at very low levels and is well tolerated and safe in PD patients. Preliminary effects on neuroinflammation and clinical scores motivate a future randomized controlled trial (RCT) in PD. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johan Wallin
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Anton Forsberg
- Centre for Psychiatry Research, Karolinska InstitutetStockholmSweden
| | - Per Svenningsson
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Koller A, Preishuber-Pflügl J, Mayr D, Brunner SM, Ladek AM, Runge C, Aigner L, Reitsamer HA, Trost A. Cysteinyl leukotriene receptor 1 modulates retinal immune cells, vascularity and proteolytic activity in aged mice. Aging (Albany NY) 2025; 17:308-328. [PMID: 39891615 PMCID: PMC11892928 DOI: 10.18632/aging.206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cysteinyl leukotrienes (CysLTs) modulate the immune response, the microvasculature, cell stress and the endosomal-lysosomal system, and are involved in cellular aging. Interestingly, CysLT receptor 1 (Cysltr1) is highly expressed in the retina, a tissue that is strongly affected by the aging process. Thus, we performed an introductory examination to determine a potential importance of Cysltr1 for cells in the neurovascular unit using qPCR and immunofluorescence analysis, and on proteolytic activity in the retinas of aged mice. Aged mice (~84 weeks) were treated orally with vehicle or 10 mg/kg montelukast (MTK), a specific Cysltr1 inhibitor, for 8 weeks, 5x/week. The retinas of young mice (~11 weeks) served as controls. Compared with young control mice, aged mice exhibited increased numbers of microglia and a reduced retinal capillary diameter, but these age-dependent changes were abrogated by MTK treatment. Retinal protein levels of the ubiquitin binding protein sequestosome-1 were amplified by aging, but were reduced by MTK treatment. Interestingly, retinal proteasome activity was decreased in aged mice, whereas Cysltr1 inhibition increased this activity. The reduction in immune cells caused by Cysltr1 suppression may dampen neuroinflammation, a known promoter of tissue aging. Additionally, an increase in capillary diameter after Cysltr1 inhibition could have a beneficial effect on blood flow in aged individuals. Furthermore, the increase in proteolytic activity upon Cysltr1 inhibition could prevent the accumulation of toxic deposits, which is a hallmark of aged tissue. Overall, Cysltr1 is a promising target for modulating the impact of aging on retinal tissue.
Collapse
Affiliation(s)
- Andreas Koller
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Daniela Mayr
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
3
|
Seetharaman ATM, Owens CE, Gangaraju R. Cysteinyl Leukotriene Receptor Antagonism by Montelukast to Treat Visual Deficits. J Ocul Pharmacol Ther 2024; 40:617-628. [PMID: 39358316 DOI: 10.1089/jop.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Montelukast, a Food and Drug Administration-approved drug for asthma and allergic rhinitis modulates leukotriene (LT) receptors and serves as a critical anti-inflammatory agent. Recent research suggests that the LT signaling pathway targeted by montelukast has broader implications for diseases such as fibrosis, cardiovascular diseases, cancer, cerebrovascular disease, and immune defense. This expanded understanding highlights montelukast's potential for repurposing in conditions involving aberrant stress mechanisms, including ocular diseases marked by inflammation, oxidative stress, ER stress, and apoptosis, among several others. This review delves into montelukast's therapeutic mechanisms across various diseases, draws parallels to ocular conditions, and examines clinical trials and associated adverse effects to underscore the unmet need for cysteinyl LT receptor antagonism by montelukast as an effective therapy for visual deficits.
Collapse
Affiliation(s)
- Amritha T M Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Caroline E Owens
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Pietrantonio F, Serreqi A, Zerbe H, Svenningsson P, Aigner L. The leukotriene receptor antagonist montelukast as a potential therapeutic adjuvant in multiple sclerosis - a review. Front Pharmacol 2024; 15:1450493. [PMID: 39346564 PMCID: PMC11427386 DOI: 10.3389/fphar.2024.1450493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.
Collapse
Affiliation(s)
| | | | | | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Sood R, Anoopkumar-Dukie S, Rudrawar S, Hall S. Neuromodulatory effects of leukotriene receptor antagonists: A comprehensive review. Eur J Pharmacol 2024; 978:176755. [PMID: 38909933 DOI: 10.1016/j.ejphar.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Cysteinyl leukotrienes (CysLTs) are central to the pathophysiology of asthma and various inflammatory disorders. Leukotriene receptor antagonists (LTRAs) effectively treat respiratory conditions by targeting cysteinyl leukotriene receptors, CysLT1 and CysLT2 subtypes. This review explores the multifaceted effects of LTs, extending beyond bronchoconstriction. CysLT receptors are not only present in the respiratory system but are also crucial in neuronal signaling pathways. LTRAs modulate these receptors, influencing downstream signaling, calcium levels, inflammation, and oxidative stress (OS) within neurons hinting at broader implications. Recent studies identify novel molecular targets, sparking interest in repurposing LTRAs for therapeutic use. Clinical trials are investigating their potential in neuroinflammation control, particularly in Alzheimer's disease (AD) and Parkinson's diseases (PD). However, montelukast, a long-standing LTRA since 1998, raises concerns due to neuropsychiatric adverse drug reactions (ADRs). Despite widespread use, understanding montelukast's metabolism and underlying ADR mechanisms remains limited. This review comprehensively examines LTRAs' diverse biological effects, emphasizing non-bronchoconstrictive activities. It also analyses plausible mechanisms behind LTRAs' neuronal effects, offering insights into their potential as neurodegenerative disease modulators. The aim is to inform clinicians, researchers, and pharmaceutical developers about LTRAs' expanding roles, particularly in neuroinflammation control and their promising repurposing for neurodegenerative disease management.
Collapse
Affiliation(s)
- Radhika Sood
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Queensland, 4222, Australia
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
6
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
7
|
Yerraguravagari B, Penchikala NP, Kolusu AS, Ganesh GS, Konduri P, Nemmani KVS, Samudrala PK. Montelukast Ameliorates Scopolamine-induced Alzheimer's Disease: Role on Cholinergic Neurotransmission, Antioxidant Defence System, Neuroinflammation and Expression of BDNF. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1040-1055. [PMID: 37779395 DOI: 10.2174/0118715273258337230925040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an overwhelming neurodegenerative disease with progressive loss of memory. AD is characterized by the deposition of the senile plaques mainly composed of β-amyloid (Aβ) fragment, BDNF decline, Cholinergic system overactivity and neuroinflammation. Montelukast (MTK), a leukotriene receptor antagonist, showed astounding neuroprotective effects in a variety of neurodegenerative disorders. OBJECTIVE This study aims to investigate the ameliorative effects of Montelukast in the scopolamineinduced Alzheimer's disease (AD) model in rats and evaluate its activity against neuroinflammation. METHODS Thirty rats were split into five groups: Control group (1 mL/kg normal saline, i.p.), Montelukast perse (10 mg/kg, i.p.), Disease group treated with Scopolamine (3 mg/kg, i.p.), Donepezil group (3 mg/kg, i.p.), Montelukast treatment group (10 mg/kg, i.p.) and behavioural and biochemical tests were carried out to assess the neuro protective effect. RESULTS Scopolamine treatment led to a significant reduction in learning and memory and an elevation in cholinesterase levels when compared with the control group (p < 0.01). Additionally, elevated oxidative stress and Amyloid-β levels were associated with enhanced neuroinflammation (p < 0.05, p < 0.01). Furthermore, the decline in neurotrophic factor BDNF is also observed when compared with the normal control group (p < 0.01). Montelukast pre-treatment significantly attenuated learning and memory impairment and cholinesterase levels. Besides, Montelukast and standard drug donepezil administration significantly suppressed the oxidative stress markers (p < 0.01), Amyloid-β levels, neuroinflammatory mediators (p < 0.05) and caused a significant increase in BDNF levels (p < 0.05). CONCLUSION Montelukast bestowed ameliorative effects in scopolamine-induced AD animal models as per the previous studies via attenuation of memory impairment, cholinesterase neurotransmission, oxidative stress, Amyloid-β levels, neuroinflammatory mediators and enhanced BDNF levels.
Collapse
Affiliation(s)
- Bhavana Yerraguravagari
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Naga Pavani Penchikala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Grandhi Sandeep Ganesh
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Prasad Konduri
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Kumar V S Nemmani
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP) - Vishnupur, Bhimavaram - 534202, West Godavari, Andhra Pradesh, India
| |
Collapse
|
8
|
Yang B, Yang Z, Liu H, Qi H. Dynamic modelling and tristability analysis of misfolded α-synuclein degraded via autophagy in Parkinson's disease. Biosystems 2023; 233:105036. [PMID: 37726073 DOI: 10.1016/j.biosystems.2023.105036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
The widely-accepted hallmark pathology of Parkinson's disease (PD) is the presence of Lewy bodies with characteristic abnormal aggregated α-synuclein (αSyn). Growing physiological evidence suggests that there is a pivotal role for the autophagy-lysosome pathway (ALP) in the clearance of misfolded αSyn (αSyn∗). This work establishes a mathematical model for αSyn∗ degradation through the ALP. Qualitative simulations are used to uncover the tristable behavior of αSyn∗, i.e., the lower, medium, and upper steady states, which correspond to the healthy, critical, and disease stages of PD, respectively. Time series and codimension-1 bifurcation analysis suggest that the system shows tristability dynamics. Furthermore, variations in the key parameters influence the tristable dynamic behavior, and the distribution of tristable regions is exhibited more comprehensively in codimension-2 bifurcation diagrams. In addition, robustness analysis demonstrates that tristability is a robust property of the system. These results may be valuable in therapeutic strategies for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Bojie Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Zhuoqin Yang
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China.
| | - Heng Liu
- School of Mathematical Sciences and LMIB, Beihang University, Beijing, 100191, People's Republic of China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
9
|
Koller A, Brunner SM, Preishuber-Pflügl J, Mayr D, Ladek AM, Runge C, Reitsamer HA, Trost A. Inhibition of CysLTR1 reduces the levels of aggregated proteins in retinal pigment epithelial cells. Sci Rep 2023; 13:13239. [PMID: 37580467 PMCID: PMC10425468 DOI: 10.1038/s41598-023-40248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
The endosomal-lysosomal system (ELS), which carries out cellular processes such as cellular waste degradation via autophagy, is essential for cell homeostasis. ELS inefficiency leads to augmented levels of damaged organelles and intracellular deposits. Consequently, the modulation of autophagic flux has been recognized as target to remove damaging cell waste. Recently, we showed that cysteinyl leukotriene receptor 1 (CysLTR1) antagonist application increases the autophagic flux in the retinal pigment epithelial cell line ARPE-19. Consequently, we investigated the effect of CysLTR1 inhibition-driven autophagy induction on aggregated proteins in ARPE-19 cells using flow cytometry analysis. A subset of ARPE-19 cells expressed CysLTR1 on the surface (SE+); these cells showed increased levels of autophagosomes, late endosomes/lysosomes, aggregated proteins, and autophagy as well as decreased reactive oxygen species (ROS) formation. Furthermore, CysLTR1 inhibition for 24 h using the antagonist zafirlukast decreased the quantities of autophagosomes, late endosomes/lysosomes, aggregated proteins and ROS in CysLTR1 SE- and SE+ cells. We concluded that high levels of plasma membrane-localized CysLTR1 indicate an increased amount of aggregated protein, which raises the rate of autophagic flux. Furthermore, CysLTR1 antagonist application potentially mimics the physiological conditions observed in CysLTR1 SE+ cells and can be considered as strategy to dampen cellular aging.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Daniela Mayr
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| |
Collapse
|
10
|
Mrowetz H, Kotob MH, Forster J, Aydin I, Unger MS, Lubec J, Hussein AM, Malikovic J, Feyissa DD, Korz V, Höger H, Lubec G, Aigner L. Leukotriene signaling as molecular correlate for cognitive heterogeneity in aging: an exploratory study. Front Aging Neurosci 2023; 15:1140708. [PMID: 37600518 PMCID: PMC10433382 DOI: 10.3389/fnagi.2023.1140708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Aging is in general associated with a decline in cognitive functions. Looking more closely, there is a huge heterogeneity in the extent of cognitive (dys-)abilities in the aged population. It ranges from the population of resistant, resilient, cognitively unimpaired individuals to patients with severe forms of dementias. Besides the known genetic, environmental and life style factors that shape the cognitive (dys-)abilities in aging, the underlying molecular mechanisms and signals related to cognitive heterogeneity are completely unknown. One putative mechanism underlying cognitive heterogeneity might be neuroinflammation, exerted through microglia, the brain's innate immune cells, as neuroinflammation is central to brain aging and neurodegenerative diseases. Recently, leukotrienes (LTs), i.e., small lipid mediators of inflammation produced by microglia along aging and neurodegeneration, got in the focus of geroscience as they might determine cognitive dysfunctions in aging. Methods Here, we analyzed the brain's expression of key components of the LT synthesis pathway, i.e., the expression of 5-lipoxygenase (5-Lox), the key enzyme in LT production, and 5-lipoxygenase-activating protein (FLAP) in young and aged rats. More specifically, we used a cohort of rats, which, although grown up and housed under identical conditions, developed into aged cognitively unimpaired and aged cognitively impaired traits. Results Expression of 5-Lox was increased within the brain of aged rats with the highest levels detected in cognitively impaired animals. The number of microglia cells was higher in the aged compared to the young brains with, again, the highest numbers of 5-Lox expressing microglia in the aged cognitively impaired rats. Remarkably, lower cognitive scores in the aged rats associated with higher numbers of 5-Lox positive microglia in the animals. Similar data were obtained for FLAP, at least in the cortex. Our data indicate elevated levels of the LT system in the brain of cognitively impaired animals. Discussion We conclude that 5-Lox expressing microglia potentially contribute to the age-related cognitive decline in the brain, while low levels of the LT system might indicate and foster higher cognitive functions and eventually cognitive reserve and resilience in aging.
Collapse
Affiliation(s)
- Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Mohamed H. Kotob
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Jennifer Forster
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Iren Aydin
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Michael Stefan Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Jovana Malikovic
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | | | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Hidden Comorbidities in Asthma: A Perspective for a Personalized Approach. J Clin Med 2023; 12:jcm12062294. [PMID: 36983294 PMCID: PMC10059265 DOI: 10.3390/jcm12062294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Bronchial asthma is the most frequent inflammatory non-communicable condition affecting the airways worldwide. It is commonly associated with concomitant conditions, which substantially contribute to its burden, whether they involve the lung or other districts. The present review aims at providing an overview of the recent acquisitions in terms of asthma concomitant systemic conditions, besides the commonly known respiratory comorbidities. The most recent research has highlighted a number of pathobiological interactions between asthma and other organs in the view of a shared immunological background underling different diseases. A bi-univocal relationship between asthma and common conditions, including cardiovascular, metabolic or neurodegenerative diseases, as well as rare disorders such as sickle cell disease, α1-Antitrypsin deficiency and immunologic conditions with hyper-eosinophilia, should be considered and explored, in terms of diagnostic work-up and long-term assessment of asthma patients. The relevance of that acquisition is of utmost importance in the management of asthma patients and paves the way to a new approach in the light of a personalized medicine perspective, besides targeted therapies.
Collapse
|
12
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
13
|
MCC950 ameliorates the dementia symptom at the early age of line M83 mouse and reduces hippocampal α-synuclein accumulation. Biochem Biophys Res Commun 2022; 611:23-30. [DOI: 10.1016/j.bbrc.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
14
|
Leukotriene Signaling as a Target in α-Synucleinopathies. Biomolecules 2022; 12:biom12030346. [PMID: 35327537 PMCID: PMC8944962 DOI: 10.3390/biom12030346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are two common types of α-synucleinopathies and represent a high unmet medical need. Despite diverging clinical manifestations, both neurodegenerative diseases share several facets of their complex pathophysiology. Apart from α-synuclein aggregation, an impairment of mitochondrial functions, defective protein clearance systems and excessive inflammatory responses are consistently observed in the brains of PD as well as DLB patients. Leukotrienes are lipid mediators of inflammatory signaling traditionally known for their role in asthma. However, recent research advances highlight a possible contribution of leukotrienes, along with their rate-limiting synthesis enzyme 5-lipoxygenase, in the pathogenesis of central nervous system disorders. This review provides an overview of in vitro as well as in vivo studies, in summary suggesting that dysregulated leukotriene signaling is involved in the pathological processes underlying PD and DLB. In addition, we discuss how the leukotriene signaling pathway could serve as a future drug target for the therapy of PD and DLB.
Collapse
|
15
|
Koller A, Preishuber-Pflügl J, Runge C, Ladek AM, Brunner SM, Aigner L, Reitsamer H, Trost A. Chronobiological activity of cysteinyl leukotriene receptor 1 during basal and induced autophagy in the ARPE-19 retinal pigment epithelial cell line. Aging (Albany NY) 2021; 13:25670-25693. [PMID: 34919533 PMCID: PMC8751616 DOI: 10.18632/aging.203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
16
|
Xiong LY, Ouk M, Wu CY, Rabin JS, Lanctôt KL, Herrmann N, Black SE, Edwards JD, Swardfager W. Leukotriene receptor antagonist use and cognitive decline in normal cognition, mild cognitive impairment, and Alzheimer's dementia. Alzheimers Res Ther 2021; 13:147. [PMID: 34479635 PMCID: PMC8418104 DOI: 10.1186/s13195-021-00892-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Leukotriene receptor antagonists (LTRAs) alleviate Alzheimer's disease (AD) pathology and improve cognition in animal models; however, clinical evidence is limited. This study aimed to explore the associations between the use of LTRAs (montelukast or zafirlukast) and cognitive performance in people with normal cognition, mild cognitive impairment (MCI), or AD dementia. We hypothesized that LTRA use would be associated with better cognitive performance over time. METHODS This longitudinal observational study used data from the National Alzheimer's Coordinating Center. Within groups of participants with normal cognition, MCI, or AD dementia, LTRA users were matched 1:3 to non-users using propensity score matching. Cognitive domains including immediate and delayed memory (Wechsler Memory Scale Revised-Logical Memory IA and IIA), psychomotor processing speed (Digit Symbol Substitution Test), and language (animal naming, vegetable naming, and Boston Naming Test) were compared between users and non-users in mixed-effects linear or Poisson regression models. RESULTS In AD dementia, LTRA use was associated with a slower decline in psychomotor processing speed, as measured by the Digit Symbol Substitution Test (Β = 1.466 [0.253, 2.678] symbols/year, n = 442), and language, as measured by animal naming (Β = 0.541 [0.215, 0.866] animals/year, n = 566), vegetable naming (B = 0.309 [0.056, 0.561] vegetables/year, n = 565), and the Boston Naming Test (B = 0.529 [0.005, 1.053] items/year, n = 561). Effect sizes were small but persisted after controlling for a 10% false discovery rate. LTRA use was not associated with changes in memory performance in AD, nor was it associated with changes in cognitive performance in people with normal cognition or MCI. In a post hoc analysis, LTRA use was associated with a slower decline in clinical progression in MCI (B = -0.200 [-0.380, -0.019] points/year, n = 800) and AD dementia (B = -0.321 [-0.597, -0.046] points/year, n = 604) as measured by CDR Sum of Boxes. CONCLUSIONS The use of LTRAs was associated with preserved function in non-amnestic cognitive domains in AD dementia. The role of leukotrienes and their receptors in cognitive decline warrants further investigation and the leukotriene pathway may represent a target for AD treatment.
Collapse
Affiliation(s)
- Lisa Y Xiong
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Room 4207, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Che-Yuan Wu
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Room 4207, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jennifer S Rabin
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Krista L Lanctôt
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Room 4207, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- KITE UHN Toronto Rehabilitation Institute, Toronto, Canada
| | - Nathan Herrmann
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- KITE UHN Toronto Rehabilitation Institute, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Toronto, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- ICES, Ottawa, Canada
| | - Walter Swardfager
- Dr. Sandra Black Centre for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Room 4207, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- KITE UHN Toronto Rehabilitation Institute, Toronto, Canada.
- Canadian Partnership for Stroke Recovery, Toronto, Canada.
| |
Collapse
|
17
|
Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22115606. [PMID: 34070609 PMCID: PMC8198163 DOI: 10.3390/ijms22115606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where misfolded alpha-synuclein-enriched aggregates called Lewy bodies are central in pathogenesis. No neuroprotective or disease-modifying treatments are currently available. Parkinson’s disease is considered a multifactorial disease and evidence from multiple patient studies and animal models has shown a significant immune component during the course of the disease, highlighting immunomodulation as a potential treatment strategy. The immune changes occur centrally, involving microglia and astrocytes but also peripherally with changes to the innate and adaptive immune system. Here, we review current understanding of different components of the PD immune response with a particular emphasis on the leukotriene pathway. We will also describe evidence of montelukast, a leukotriene receptor antagonist, as a possible anti-inflammatory treatment for PD.
Collapse
|
18
|
Schwimmbeck F, Staffen W, Höhn C, Rossini F, Renz N, Lobendanz M, Reichenpfader P, Iglseder B, Aigner L, Trinka E, Höller Y. Cognitive Effects of Montelukast: A Pharmaco-EEG Study. Brain Sci 2021; 11:547. [PMID: 33925326 PMCID: PMC8145277 DOI: 10.3390/brainsci11050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Montelukast is a well-established antiasthmatic drug with little side effects. It is a leukotriene receptor antagonist and recent research suggests cognitive benefits from its anti-inflammatory actions on the central nervous system. However, changes in brain activity were not directly shown so far in humans. This study aims to document changes in brain activity that are associated with cognitive improvement during treatment with Montelukast. We recorded EEG and conducted neuropsychological tests in 12 asthma-patients aged 38-73 years before and after 8 weeks of treatment with Montelukast. We found no significant changes on neuropsychological scales for memory, attention, and mood. In the EEG, we found decreased entropy at follow up during rest (p < 0.005). During episodic memory acquisition we found decreased entropy (p < 0.01) and acceleration of the background rhythm (p < 0.05). During visual attention performance, we detected an increase in gamma power (p < 0.005) and slowing of the background rhythm (p < 0.05). The study is limited by its small sample size, young age and absence of baseline cognitive impairment of the participants. Unspecific changes in brain activity were not accompanied by cognitive improvement. Future studies should examine elderly patients with cognitive impairment in a double-blind study with longer-term treatment by Montelukast.
Collapse
Affiliation(s)
- Fabian Schwimmbeck
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.S.); (W.S.); (F.R.); (N.R.); (E.T.)
- Centre for Cognitive Neuroscience (CCNS), Department of Psychology, University of Salzburg, 5020 Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Wolfgang Staffen
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.S.); (W.S.); (F.R.); (N.R.); (E.T.)
- Neuroscience Institute, Christian Doppler University Hospital, 5020 Salzburg, Austria
| | - Christopher Höhn
- Centre for Cognitive Neuroscience (CCNS), Department of Psychology, University of Salzburg, 5020 Salzburg, Austria;
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Fabio Rossini
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.S.); (W.S.); (F.R.); (N.R.); (E.T.)
- Neuroscience Institute, Christian Doppler University Hospital, 5020 Salzburg, Austria
| | - Nora Renz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.S.); (W.S.); (F.R.); (N.R.); (E.T.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Markus Lobendanz
- Medical Practice for Pulmonology Lobendanz, 5020 Salzburg, Austria;
| | | | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (F.S.); (W.S.); (F.R.); (N.R.); (E.T.)
- Centre for Cognitive Neuroscience (CCNS), Department of Psychology, University of Salzburg, 5020 Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
- Neuroscience Institute, Christian Doppler University Hospital, 5020 Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, 600 Akureyri, Iceland
| |
Collapse
|
19
|
Michael J, Zirknitzer J, Unger MS, Poupardin R, Rieß T, Paiement N, Zerbe H, Hutter-Paier B, Reitsamer H, Aigner L. The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. Int J Mol Sci 2021; 22:2782. [PMID: 33803482 PMCID: PMC7967180 DOI: 10.3390/ijms22052782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. In particular, neuroinflammation, mediated by microglia cells but also through CD8+ T-cells, actively contributes to disease pathology. Leukotrienes are involved in neuroinflammation and in the pathological hallmarks of AD. In consequence, leukotriene signaling-more specifically, the leukotriene receptors-has been recognized as a potential drug target to ameliorate AD pathology. Here, we analyzed the effects of the leukotriene receptor antagonist montelukast (MTK) on hippocampal gene expression in 5xFAD mice, a commonly used transgenic AD mouse model. We identified glial activation and neuroinflammation as the main pathways modulated by MTK. The treatment increased the number of Tmem119+ microglia and downregulated genes related to AD-associated microglia and to lipid droplet-accumulating microglia, suggesting that the MTK treatment targets and modulates microglia phenotypes in the disease model compared to the vehicle. MTK treatment further reduced infiltration of CD8+T-cells into the brain parenchyma. Finally, MTK treatment resulted in improved cognitive functions. In summary, we provide a proof of concept for MTK to be a potential drug candidate for AD and provide novel modes of action via modulation of microglia and CD8+ T-cells. Of note, 5xFAD females showed a more severe pathology, and in consequence, MTK treatment had a more pronounced effect in the females compared to the males. The effects on neuroinflammation, i.e., microglia and CD8+ T-cells, as well as the effects on cognitive outcome, were dose-dependent, therefore arguing for the use of higher doses of MTK in AD clinical trials compared to the approved asthma dose.
Collapse
Affiliation(s)
- Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Julia Zirknitzer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Michael Stefan Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Tanja Rieß
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Nadine Paiement
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | - Horst Zerbe
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | | | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
- Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
20
|
Michael J, Bessa de Sousa D, Conway J, Gonzalez-Labrada E, Obeid R, Tevini J, Felder T, Hutter-Paier B, Zerbe H, Paiement N, Aigner L. Improved Bioavailability of Montelukast through a Novel Oral Mucoadhesive Film in Humans and Mice. Pharmaceutics 2020; 13:E12. [PMID: 33374646 PMCID: PMC7822410 DOI: 10.3390/pharmaceutics13010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer's disease, a disease with increasing interest in repurposing of MTK. This, and the need for an improved bioavailability, triggered us to reformulate MTK. Our aim was to develop a mucoadhesive MTK film with good safety and improved pharmacological features, i.e., an improved bioavailability profile in humans as well as in a mouse model of Alzheimer's disease. We tested dissolution of the MTK mucoadhesive film and assessed pharmacoexposure and kinetics after acute and chronic oral application in mice. Furthermore, we performed a Phase I analysis in humans, which included a comparison with the marketed tablet form as well as a quantitative analysis of the MTK levels in the cerebrospinal fluid. The novel MTK film demonstrated significantly improved bioavailability compared to the marketed tablet in the clinical Phase 1a study. Furthermore, there were measurable amounts of MTK present in the cerebrospinal fluid (CSF). In mice, MTK was detected in serum and CSF after acute and chronic exposure in a dose-dependent manner. The mucoadhesive film of MTK represents a promising alternative for the tablet delivery. The oral film might lower the non-responder rate in patients with asthma and might be an interesting product for repurposing of MTK in other diseases. As we demonstrate Blood-Brain-Barrier (BBB) penetrance in a preclinical model, as well as in a clinical study, the oral film of MTK might find its use as a therapeutic for acute and chronic neurodegenerative diseases such as dementias and stroke.
Collapse
Affiliation(s)
- Johanna Michael
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
| | - Diana Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
| | - Justin Conway
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | | | - Rodolphe Obeid
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.T.); (T.F.)
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.T.); (T.F.)
| | | | - Horst Zerbe
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Nadine Paiement
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
- QPS Neuropharmacology, 8074 Grambach/Graz, Austria;
- Austrian Cluster of Tissue Regeneration Affiliation, 1200 Vienna, Austria
| |
Collapse
|
21
|
Aigner L, Pietrantonio F, Bessa de Sousa DM, Michael J, Schuster D, Reitsamer HA, Zerbe H, Studnicka M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front Mol Biosci 2020; 7:610132. [PMID: 33392263 PMCID: PMC7773944 DOI: 10.3389/fmolb.2020.610132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence and global impact of COVID-19 has focused the scientific and medical community on the pivotal influential role of respiratory viruses as causes of severe pneumonia, on the understanding of the underlying pathomechanisms, and on potential treatment for COVID-19. The latter concentrates on four different strategies: (i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii) anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19 associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19 associated lung injury. Ideally, effective COVID-19 treatment should target as many of these mechanisms as possible arguing for the search of common denominators as potential drug targets. Leukotrienes and their receptors qualify as such targets: they are lipid mediators of inflammation and tissue damage and well-established targets in respiratory diseases like asthma. Besides their role in inflammation, they are involved in various other aspects of lung pathologies like vascular damage, thrombosis, and fibrotic response, in brain and retinal damages, and in cardiovascular disease. In consequence, leukotriene receptor antagonists might be potential candidates for COVID-19 therapeutics. This review summarizes the current knowledge on the potential involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene receptor antagonist montelukast as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, University Clinic Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program of Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Michael Studnicka
- Department of Pulmonary Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|