1
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
2
|
Farrell K, Auerbach A, Liu C, Martin K, Pareno M, Ray WK, Helm RF, Biase F, Jarome TJ. Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in rats. Biol Sex Differ 2023; 14:80. [PMID: 37950270 PMCID: PMC10638793 DOI: 10.1186/s13293-023-00566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. METHODS We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. RESULTS We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. CONCLUSIONS These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Kayla Farrell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Aubrey Auerbach
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Catherine Liu
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Myasia Pareno
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA.
- School of Neuroscience, Virginia Polytechnic Institute and State University, 175 West Campus Dr., 2150 Litton-Reaves Hall, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Abbas M, Luk KC, Leak RK. The variance in phosphorylated, insoluble ⍺-synuclein in humans, rats, and mice is not mainly driven by biological sex. Acta Neuropathol 2023; 146:651-654. [PMID: 37568067 PMCID: PMC10576607 DOI: 10.1007/s00401-023-02621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
4
|
Bhatia TN, Jamenis AS, Abbas M, Clark RN, Miner KM, Chandwani MN, Kim RE, Hilinski W, O'Donnell LA, Luk KC, Shi Y, Hu X, Chen J, Brodsky JL, Leak RK. A 14-day pulse of PLX5622 modifies α-synucleinopathy in preformed fibril-infused aged mice of both sexes. Neurobiol Dis 2023; 184:106196. [PMID: 37315905 PMCID: PMC10528721 DOI: 10.1016/j.nbd.2023.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Roxanne E Kim
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Lauren A O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Zhang H, D'Agostino C, Tulisiak C, Thorwald MA, Bergkvist L, Lindquist A, Meyerdirk L, Schulz E, Becker K, Steiner JA, Cacciottolo M, Kwatra M, Rey NL, Escobar Galvis ML, Ma J, Sioutas C, Morgan TE, Finch CE, Brundin P. Air pollution nanoparticle and alpha-synuclein fibrils synergistically decrease glutamate receptor A1, depending upon nPM batch activity. Heliyon 2023; 9:e15622. [PMID: 37128335 PMCID: PMC10148131 DOI: 10.1016/j.heliyon.2023.e15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Background Epidemiological studies have variably linked air pollution to increased risk of Parkinson's disease (PD). However, there is little experimental evidence for this association. Alpha-synuclein (α-syn) propagation plays central roles in PD and glutamate receptor A1 (GluA1) is involved in memory and olfaction function. Methods Each mouse was exposed to one of three different batches of nano-particulate matter (nPM) (300 μg/m3, 5 h/d, 3 d/week), collected at different dates, 2017-2019, in the same urban site. After these experiments, these nPM batches were found to vary in activity. C57BL/6 female mice (3 mo) were injected with pre-formed murine α-synuclein fibrils (PFFs) (0.4 μg), which act as seeds for α-syn aggregation. Two exposure paradigms were used: in Paradigm 1, PFFs were injected into olfactory bulb (OB) prior to 4-week nPM (Batch 5b) exposure and in Paradigm 2, PFFs were injected at 4th week during 10-week nPM exposure (Batches 7 and 9). α-syn pSer129, microglia Iba1, inflammatory cytokines, and Gria1 expression were measured by immunohistochemistry or qPCR assays. Results As expected, α-syn pSer129 was detected in ipsilateral OB, anterior olfactory nucleus, amygdala and piriform cortex. One of the three batches of nPM caused a trend for elevated α-syn pSer129 in Paradigm 1, but two other batches showed no effect in Paradigm 2. However, the combination of nPM and PFF significantly decreased Gria1 mRNA in both the ipsi- and contra-lateral OB and frontal cortex for the most active two nPM batches. Neither nPM nor PFFs alone induced responses of microglia Iba1 and expression of Gria1 in the OB and cortex. Conclusion Exposures to ambient nPM had weak effect on α-syn propagation in the brain in current experimental paradigms; however, nPM and α-syn synergistically downregulated the expression of Gria1 in both OB and cortex.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, USA
- Corresponding author.
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | - Max A. Thorwald
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | | | | | - Emily Schulz
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | | | - Mohit Kwatra
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | - Jiyan Ma
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | |
Collapse
|
6
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|