1
|
Yang J, Wu H, Li Q, Guo J, Yao J, Pan S, Wu X, Huang H, Chen R, Chen J, Wang Y, Peng Y, Wu F, Hu J. A Simple and Rapid Method for Simultaneous Isolation of Mouse Retina and RPE Wholemounts. Transl Vis Sci Technol 2025; 14:14. [PMID: 40354066 PMCID: PMC12080734 DOI: 10.1167/tvst.14.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025] Open
Abstract
Purpose Retina and retinal pigment epithelium (RPE) wholemounts are important models for studying the pathophysiology of retinal-related ophthalmic diseases, such as age-related macular degeneration and diabetic retinopathy. Currently, there is no method available for simultaneously obtaining retina and RPE wholemounts. The aim of this study is to develop a simple, rapid, and effective technique for the simultaneous isolation of mouse retina and RPE wholemounts. Methods We developed a novel, streamlined procedure for the efficient isolation of intact retina and RPE wholemounts from mouse eyes. The method involves minimal dissection and uses basic laboratory equipment, allowing the entire process to be completed in approximately 2 to 5 minutes per sample. The study also explores the impact of different fixation times on the structural integrity and quality of both retina and RPE wholemounts (3 hours in 4% paraformaldehyde [PFA], 30 minutes < 1 × phosphate-buffered saline [PBS] < 3 hours). Results The new method consistently yields high-quality, intact retina and RPE wholemounts, with excellent structural integrity suitable for downstream imaging and molecular analyses. The technique significantly reduces preparation time. Optimal fixation conditions were identified, with 3 hours of fixation in 4% PFA and PBS incubation times between 30 minutes and 3 hours yielding the best results. The approach showed higher tissue integrity (80% vs. 45%) and improved staining quality of photoreceptor and ganglion cells. Additionally, the method is highly reproducible and effective for wholemount preparations from both young and older mice (6 and 12 months). Conclusions This study presents a significant advancement in the preparation of retina and RPE wholemounts. The simplicity, speed, and preservation of tissue integrity of the new method make it a valuable tool for ophthalmic disease research. Its potential applications include drug screening, gene therapy, and disease modeling, offering significant advantages in time efficiency, reproducibility, and the quality of morphological analysis.
Collapse
Affiliation(s)
- Jialiang Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxin Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shengliu Pan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Tianfu New District, Chengdu, China
- The University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Xiawei Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haotian Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Runfang Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junnian Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yubin Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuhua Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicines, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Chaqour B, Rossman JB, Meng M, Dine KE, Ross AG, Shindler KS. SIRT1-based therapy targets a gene program involved in mitochondrial turnover in a model of retinal neurodegeneration. Sci Rep 2025; 15:13585. [PMID: 40253451 PMCID: PMC12009334 DOI: 10.1038/s41598-025-97456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Neurodegenerative diseases of the eye such as optic neuritis (ON) are hallmarked by retinal ganglion cell (RGC) loss and optic nerve degeneration leading to irreversible blindness. Therapeutic interventions enhancing expression or activity of SIRT1, an NAD+-dependent deacetylase, support, at least in part, survival of RGCs in the face of injury. Herein, we used mice with experimental autoimmune encephalomyelitis (EAE) which recapitulates axonal and neuronal damages characteristic of ON to identify gene regulatory networks affected by constitutive ubiquitous Sirt1 expression in SIRT1 knock-in mice and wild-type mice upon targeted adeno-associated virus (AAV)-mediated SIRT1 expression in RGCs. RNA seq data analysis showed that the most upregulated genes in EAE mouse retinas include those involved in inflammation, immune response, apoptosis, and mitochondrial turnover. The latter includes genes regulating mitophagy (e.g., Atg4), mitochondrial transport (e.g., Ipo- 6, Xpo- 6), and mitochondrial localization (e.g., Chrna4, Scn9a). The constitutive or RGC-targeted SIRT1 overexpression in EAE mice upregulated the expression of non-mitochondrial genes such as Ecel1 and downregulated the expression of mitophagy genes (e.g., Atg2b, Arifip1) which were upregulated by EAE alone. Thus, SIRT1 induces neuroprotection by, at least in part, balancing mitochondrial biogenesis and mitophagy and/or enhancing mitochondrial self-repair to preserve the bioenergetic capacity of RGCs.
Collapse
MESH Headings
- Animals
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Mice
- Mitochondria/metabolism
- Mitochondria/genetics
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Retinal Degeneration/genetics
- Retinal Degeneration/therapy
- Retinal Degeneration/pathology
- Retinal Degeneration/metabolism
- Mitophagy/genetics
- Mice, Inbred C57BL
- Genetic Therapy
- Gene Regulatory Networks
- Female
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jacob B Rossman
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Roy S. Emerging strategies targeting genes and cells in glaucoma. Vision Res 2025; 227:108533. [PMID: 39644708 PMCID: PMC11788065 DOI: 10.1016/j.visres.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Glaucoma comprises a heterogeneous set of eye conditions that cause progressive vision loss. Glaucoma has a complex etiology, with different genetic and non-genetic risk factors that differ across populations. Although difficult to diagnose in early stages, compromised cellular signaling, dysregulation of genes, and homeostatic imbalance are common precursors to injury and subsequent death of retinal ganglion cells (RGCs). Lowering intraocular pressure (IOP) remains the primary approach for managing glaucoma but IOP alone does not explain all glaucoma risks. Orthogonal approaches such as large-scale genetic screening, combined with studies of animal models have been instrumental in identifying genes and molecular pathways involved in glaucoma pathogenesis. Cell type dependent vulnerability among RGCs can reveal genetic basis for specific visual deficits. A growing body of knowledge and availability of modern tools to perform targeted assessments of cellular health in different animal models facilitate development of effective and timely interventions for vision rescue. This review highlights recent findings on genes, molecules, and cell types in the context of glaucoma pathophysiology and treatment.
Collapse
Affiliation(s)
- Suva Roy
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Millington-Ward S, Palfi A, Shortall C, Finnegan LK, Bargroff E, Post IJM, Maguire J, Irnaten M, O′Brien C, Kenna PF, Chadderton N, Farrar GJ. AAV-NDI1 Therapy Provides Significant Benefit to Murine and Cellular Models of Glaucoma. Int J Mol Sci 2024; 25:8876. [PMID: 39201561 PMCID: PMC11354491 DOI: 10.3390/ijms25168876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Glaucoma, a leading cause of blindness, is a multifactorial condition that leads to progressive loss of retinal ganglion cells (RGCs) and vision. Therapeutic interventions based on reducing ocular hypertension are not always successful. Emerging features of glaucoma include mitochondrial dysfunction and oxidative stress. In the current study, NDI1-based gene therapy, which improves mitochondrial function and reduces reactive oxygen species, was delivered intraocularly via an adeno-associated viral vector (AAV). This AAV-NDI1 therapy protected RGCs from cell death in treated (1552.4 ± 994.0 RGCs/mm2) versus control eyes (1184.4 ± 978.4 RGCs/mm2, p < 0.05) in aged DBA/2J mice, a murine model of glaucoma. The photonegative responses (PhNRs) of RGCs were also improved in treated (6.4 ± 3.3 µV) versus control eyes (5.0 ± 3.1 µV, p < 0.05) in these mice. AAV-NDI1 also provided benefits in glaucomatous human lamina cribrosa (LC) cells by significantly increasing basal and maximal oxygen consumption rates and ATP production in these cells. Similarly, NDI1 therapy significantly protected H2O2-insulted primary porcine LC cells from oxidative stress. This study highlights the potential utility of NDI1 therapies and the benefits of improving mitochondrial function in the treatment of glaucoma.
Collapse
Affiliation(s)
- Sophia Millington-Ward
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Arpad Palfi
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Ciara Shortall
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Laura K. Finnegan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Ethan Bargroff
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - Iris J. M. Post
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - John Maguire
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02XK51 Dublin, Ireland;
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin 7, D07K201 Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O′Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin 7, D07K201 Dublin, Ireland; (M.I.); (C.O.)
| | - Paul F. Kenna
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, D02XK51 Dublin, Ireland;
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02VF25 Dublin, Ireland; (A.P.); (C.S.); (L.K.F.); (E.B.); (I.J.M.P.); (P.F.K.); (G.J.F.)
| |
Collapse
|
5
|
O'Neill N, Meng M, Chaqour B, Dine K, Sarabu N, Pham JC, Shindler KS, Ross AG. Comparison of SNCG and NEFH Promoter-Driven Expression of Human SIRT1 Expression in a Mouse Model of Glaucoma. Transl Vis Sci Technol 2024; 13:37. [PMID: 39177995 PMCID: PMC11346136 DOI: 10.1167/tvst.13.8.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose Adeno-associated virus (AAV) demonstrates promise in delivering therapeutic genes to retinal ganglion cells (RGCs). Delivery of neuroprotective genes is constrained by packaging size and/or cell selectivity. This study compares the ability of the RGC-selective gamma-synuclein (SNCG) promoter and the smaller RGC-selective neurofilament heavy chain (NEFH) promoter, as well as portions of the RGC-selective atonal bHLH transcription factor 7 (ATOH7) enhancer, to drive gene expression in RGCs. Methods AAV2 constructs with green fluorescent protein (GFP) or human sirtuin 1 (hSIRT1) driven by cytomegalovirus (CMV) enhancer and NEFH promoter (AAV2-eCMV-NEFH) or distal active sequences of the ATOH7 enhancer (DiATOH7) with the SNCG promoter (AAV2-DiATOH7-SNCG) were intravitreally injected into C57BL/6J mice. RGCs were immunolabeled with Brn3a antibodies and counted. AAV constructs with the utmost transduction efficiency were used to test the therapeutic efficacy of the hSIRT1 gene in 12-week-old C57BL/6J mice subjected to microbead (MB)-induced intraocular pressure (IOP) elevation. Visual function was measured using optokinetic responses (OKRs). Results The eGFP transduction efficiency of AAV2-eCMV-NEFH was similar to that of AAV2-eCMV-SNCG and AAV2-DiATOH7-SNCG. When combined with the SNCG promoter, a larger ATOH7 enhancer was less efficient than the shorter DiATOH7 enhancer. Similarly, the hSIRT1 efficiency of AAV2-eCMV-NEFH was similar to that of AAV2-eCMV-SNCG. The latter two vectors were equally efficient in increasing RGC survival and improving visual function in the mouse model of MB-induced IOP elevation. Conclusions SNCG and NEFH promoters represent two equally efficient and comparable RGC selective promoter sequences; however, the NEFH promoter offers a smaller packaging size. Translational Relevance Smaller enhancer-promoter combinations can be used to deliver larger genes in human cells and for treatment in optic neuropathies including glaucoma.
Collapse
Affiliation(s)
- Nuala O'Neill
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neha Sarabu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer C. Pham
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Meng M, Chaqour B, O'Neill N, Dine K, Sarabu N, Ying GS, Shindler KS, Ross AG. Comparison of Brn3a and RBPMS Labeling to Assess Retinal Ganglion Cell Loss During Aging and in a Model of Optic Neuropathy. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38587440 PMCID: PMC11005068 DOI: 10.1167/iovs.65.4.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) loss provides the basis for diagnosis and stage determination of many optic neuropathies, and quantification of RGC survival is a critical outcome measure in models of optic neuropathy. This study examines the accuracy of manual RGC counting using two selective markers, Brn3a and RBPMS. Methods Retinal flat mounts from 1- to 18-month-old C57BL/6 mice, and from mice after microbead (MB)-induced intraocular pressure (IOP) elevation, are immunostained with Brn3a and/or RBPMS antibodies. Four individuals masked to the experimental conditions manually counted labeled RGCs in three copies of five images, and inter- and intra-person reliability was evaluated by the intraclass correlation coefficient (ICC). Results A larger population (approximately 10% higher) of RGCs are labeled with RBPMS than Brn3a antibody up to 6 months of age, but differences decrease to approximately 1% at older ages. Both RGC-labeled populations significantly decrease with age. MB-induced IOP elevation is associated with a significant decrease of both Brn3a- and RBPMS-positive RGCs. Notably, RGC labeling with Brn3a provides more consistent cell counts than RBPMS in interpersonal (ICC = 0.87 to 0.11, respectively) and intra-personal reliability (ICC = 0.97 to 0.66, respectively). Conclusions Brn3a and RBPMS markers are independently capable of detecting significant decreases of RGC number with age and in response to IOP elevation despite RPBMS detecting a larger number of RGCs up to 6 months of age. Brn3a labeling is less prone to manual cell counting variability than RBPMS labeling. Overall, either marker can be used as a single marker to detect significant changes in RGC survival, each offering distinct advantages.
Collapse
Affiliation(s)
- Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nuala O'Neill
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Neha Sarabu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Chaqour B, Duong TT, Yue J, Liu T, Camacho D, Dine KE, Esteve-Rudd J, Ellis S, Bennett J, Shindler KS, Ross AG. AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes. Gene Ther 2024; 31:175-186. [PMID: 38200264 DOI: 10.1038/s41434-023-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken β-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Thu T Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | - David Camacho
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Scott Ellis
- Gyroscope Therapeutics Limited, a Novartis Company, London, N7 9AS, UK
| | - Jean Bennett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Ciociola EC, Fernandez E, Kaufmann M, Klifto MR. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies. Curr Opin Ophthalmol 2024; 35:89-96. [PMID: 37910173 DOI: 10.1097/icu.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize current research on novel gene, stem cell, neuroprotective, nanomedicine, and vascular therapies for glaucoma. RECENT FINDINGS Gene therapy using viral vectors and siRNA have been shown to reduce intraocular pressure by altering outflow and production of aqueous humor, to reduce postsurgical fibrosis with few adverse effects, and to increase retinal ganglion cell (RGC) survival in animal studies. Stem cells may treat glaucoma by replacing or stimulating proliferation of trabecular meshwork cells, thus restoring outflow facility. Stem cells can also serve a neuroprotective effect by differentiating into RGCs or preventing RGC loss via secretion of growth factors. Other developing neuroprotective glaucoma treatments which can prevent RGC death include nicotinamide, the NT-501 implant which secretes ciliary neurotrophic factor, and a Fas-L inhibitor which are now being tested in clinical trials. Recent studies on vascular therapy for glaucoma have focused on the ability of Rho Kinase inhibitors and dronabinol to increase ocular blood flow. SUMMARY Many novel stem cell, gene, neuroprotective, nanomedicine, and vascular therapies have shown promise in preclinical studies, but further clinical trials are needed to demonstrate safety and efficacy in human glaucomatous eyes. Although likely many years off, future glaucoma therapy may take a multifaceted approach.
Collapse
Affiliation(s)
| | | | | | - Meredith R Klifto
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Borrás T, Stepankoff M, Danias J. Genes as drugs for glaucoma: latest advances. Curr Opin Ophthalmol 2024; 35:131-137. [PMID: 38117663 DOI: 10.1097/icu.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW To provide the latest advances on the future use of gene therapy for the treatment of glaucoma. RECENT FINDINGS In preclinical studies, a number of genes have been shown to be able to reduce elevated intraocular pressure (IOP), and to exert neuroprotection of the retinal ganglion cells. These genes target various mechanisms of action and include among others: MMP3 , PLAT, IκB, GLIS, SIRT, Tie-2, AQP1. Some of these as well as some previously identified genes ( MMP3, PLAT, BDNF, C3, TGFβ, MYOC, ANGPTL7 ) are starting to move onto drug development. At the same time, progress has been made in the methods to deliver and control gene therapeutics (advances in these areas are not covered in this review). SUMMARY While preclinical efforts continue in several laboratories, an increasing number of start-up and large pharmaceutical companies are working on developing gene therapeutics for glaucoma ( Sylentis, Quetera/Astellas, Exhaura, Ikarovec, Genentech, Regeneron, Isarna, Diorasis Therapeutics ). Despite the presence of generic medications to treat glaucoma, given the size of the potential world-wide market (∼$7B), it is likely that the number of companies developing glaucoma gene therapies will increase further in the near future.
Collapse
Affiliation(s)
- Teresa Borrás
- University of North Carolina at Chapel Hill, North Carolina
| | | | - John Danias
- Downstate Health Science University, SUNY, New York, USA
| |
Collapse
|
10
|
Camacho DK, Go CC, Chaqour B, Shindler KS, Ross AG. Emerging Gene Therapy Technologies for Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2023; 43:330-340. [PMID: 37440418 PMCID: PMC10527513 DOI: 10.1097/wno.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
ABSTRACT Optic neuropathies encompass a breadth of diseases that ultimately result in dysfunction and/or loss of retinal ganglion cells (RGCs). Although visual impairment from optic neuropathies is common, there is a lack of effective clinical treatments. Addressing a critical need for novel interventions, preclinical studies have been generating a growing body of evidence that identify promising new drug-based and cell-based therapies. Gene therapy is another emerging therapeutic field that offers the potential of specifically and robustly increasing long-term RGC survival in optic neuropathies. Gene therapy offers additional benefits of driving improvements following a single treatment administration, and it can be designed to target a variety of pathways that may be involved in individual optic neuropathies or across multiple etiologies. This review explores the history of gene therapy, the fundamentals of its application, and the emerging development of gene therapy technology as it relates to treatment of optic neuropathies.
Collapse
Affiliation(s)
- David K. Camacho
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Cammille C. Go
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Brahim Chaqour
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S. Shindler
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ahmara G. Ross
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|