1
|
Mejía-Rodríguez R, Romero-Trejo D, González RO, Segovia J. Combined treatments with AZD5363, AZD8542, curcumin or resveratrol induce death of human glioblastoma cells by suppressing the PI3K/AKT and SHH signaling pathways. Biochem Biophys Rep 2023; 33:101430. [PMID: 36714540 PMCID: PMC9876780 DOI: 10.1016/j.bbrep.2023.101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells. We found that the combined treatments with AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol inhibit the PI3K/AKT and SHH survival pathways by decreasing the activity of AKT, the reduction of the expression of SMO, pP70S6k, pS6k, GLI1, p21 and p27, and the activation of caspase-3 as a marker of apoptosis. These results provide evidence that the combined treatments AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol have the potential to be an interesting option against GBM.
Collapse
Affiliation(s)
- Rosalinda Mejía-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Daniel Romero-Trejo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Rosa O. González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico,Corresponding author. Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico.
| |
Collapse
|
2
|
Anbualakan K, Tajul Urus NQ, Makpol S, Jamil A, Mohd Ramli ES, Md Pauzi SH, Muhammad N. A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients 2022; 15:92. [PMID: 36615749 PMCID: PMC9824837 DOI: 10.3390/nu15010092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.
Collapse
Affiliation(s)
- Kirushmita Anbualakan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Qisti Tajul Urus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adawiyah Jamil
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suria Hayati Md Pauzi
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
4
|
Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets. AAPS PharmSciTech 2021; 22:257. [PMID: 34676463 DOI: 10.1208/s12249-021-02138-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Ticagrelor (TG) suffers from low peroral bioabsorption (36%) due to P-gp efflux and poor solubility (10 µg/mL). TG solid dispersion adsorbates (TG-SDAs) were formulated using an amalgamation of solid dispersion and melt adsorption techniques which were simple, economic, scalable, and solvent-free. FTIR indicated no incompatibility between drug and excipients. DSC, XRD, and SEM suggested a reduction in TG crystallinity. Q30min from TG-SUSP and TG-conventional tablets was only 2.30% and 6.59% respectively whereas TG-SDA-based tablets exhibited a significantly higher drug release of 86.47%. Caco-2 permeability studies showed 3.83-fold higher permeability of TG from TG-SDAs. TG-SDA-based tablets exhibited relative bioavailability of 748.53% and 153.43% compared to TG-SUSP and TG-conventional tablets respectively in rats. TG-SDA-based tablets were devoid of any cytotoxicity as indicated by MTT assay and exhibited better antiplatelet activity in rats. Enhanced oral bioavailability of TG-SDAs can be attributed to inhibition of P-gp efflux by PEG 4000, increased wettability, and reduced crystallinity of drug leading to improved drug solubility and dissolution. Improved bioabsorption results in a reduction of dose, cost of therapy as well as dose-related side effects. Thus, SDAs can be considered a promising and scalable approach for the improvement of dissolution rate and solubility of TG. TG-SDAs can be translated to an effective and safe dosage form, whereby its rapid onset of action promotes the prevention of heart attack, stroke, and related ill events in individuals with the acute coronary syndrome. However, scale-up, validation, and clinical-studies are necessary for confirmation of the proof-of-concept.
Collapse
|
5
|
Ergin Kızılçay G, Ertürk Toker S. Effect of glycyrrhizic acid on the bioavailability of resveratrol after oral administration in rabbit plasma using HPLC with fluorescence detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Mohapatra D, Agrawal AK, Sahu AN. Exploring the potential of solid dispersion for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and bioactives. J Microencapsul 2021; 38:594-612. [PMID: 34338596 DOI: 10.1080/02652048.2021.1963342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most drugs' poor aqueous solubility has emerged as a significant challenge in achieving proper therapeutic response following oral administration. Herbal drugs are being used from time immemorial to prevent, mitigate, and cure multiple diseases. However, most of the bioactives phytoconstituents possess limited aqueous solubility & poor oral bioavailability. Solid dispersion (SD) has been realised as an efficient formulation to overcome hydrophobic candidates' solubility issues and improve their oral bioavailability. The current review mainly explores the potential of SD for improving solubility, dissolution & bioavailability of herbal extracts, enriched fractions, and isolated bioactives. Hence, basics of SD, selection of excipients, need for SD of plant products, SD of plant products, selection of preparation method, the chemistry of phytoconstituent-excipient interaction, and hurdles associated with SD of herbal extract/enriched fraction were explored in this review. The SD has the potential to overcome solubility, dissolution, and oral bioavailability issues of poorly soluble phytoconstituents.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Ashish K Agrawal
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Alakh N Sahu
- Phytomedicine Research Lab., Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, India
| |
Collapse
|
7
|
Zuccari G, Alfei S, Zorzoli A, Marimpietri D, Turrini F, Baldassari S, Marchitto L, Caviglioli G. Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics 2021; 13:pharmaceutics13081128. [PMID: 34452090 PMCID: PMC8400607 DOI: 10.3390/pharmaceutics13081128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Children affected by chronic liver disease exhibit impaired neurocognitive development and growth due to the low absorption and digestion of nutrients. Furthermore, malnutrition is an adverse prognostic factor in liver transplantation as it is associated with an increase in morbidity and mortality. D-α-tocopheryl-polyethylene-glycol-succinate (TPGS) is currently administered per os as a vitamin E source to improve children's survival and well-being; however, TPGS alone does not reverse spinocerebellar degeneration and lipid peroxidation. To potentiate the effects of TPGS, we loaded micelles with resveratrol (RES), a natural polyphenol, with antioxidant and antiinflammatory activities, which has demonstrated protective action in the liver. Firstly, we investigated the suitability of TPGS to encapsulate RES in micelles by means of a phase-solubility study, then RES-TPGS formulations were prepared via solvent casting and solvent diffusion evaporation methods. RES-TPGS colloidal dispersions showed small mean diameters (12 nm), low polydispersity, and quite neutral Zeta potentials. The formulations showed a sustained drug release and a good drug loading capacity, further confirmed by infrared spectroscopy and differential scanning calorimetry. RES-TPGSs exhibited unaltered antioxidant activity compared to pristine RES via the DPPH assay and a significant reduction in toxicity compared to empty TPGS on HaCaT cells. Thus, RES-TPGS micelles may overcome the challenges of current liver disease therapy by providing more protective effects thanks to the antioxidant activity of RES and by reducing the surfactant toxicity on normal cells.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
- Correspondence:
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Sara Baldassari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| | - Leonardo Marchitto
- Department of Sciences for the Quality of Life, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I, 16148 Genova, Italy; (S.A.); (F.T.); (S.B.); (G.C.)
| |
Collapse
|
8
|
Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci 2020; 262:118555. [PMID: 33035579 DOI: 10.1016/j.lfs.2020.118555] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023]
Abstract
AIMS In the current study, resveratrol-loaded PLGA nanoparticles targeted with folate were developed in order to protect resveratrol from fast degradation, modify its pharmacokinetics and increase its intestinal permeation. Then, the therapeutic efficacy of the prepared system was evaluated in suppression of colon inflammation on TNBS-induced colitis model. MAIN METHODS In this regard, resveratrol was encapsulated in PLGA and FA-conjugated PLGA in order to prepare non-targeted (PLGA-RSV) and targeted (PLGA-FA-RSV) platforms, respectively. KEY FINDINGS Obtained results demonstrated that the prepared formulations encapsulated the resveratrol with high encapsulation efficiency of 90.7% ± 5.1% for PLGA-RSV and 59.1% ± 3.3% for PLGA-FA-RSV. In vitro release experiment showed that the prepared formulations were capable of retaining good amount of resveratrol under the simulated gastric condition (HCl 0.1 N, pH 1.2), while significant amount of resveratrol was released under simulated intestinal condition (PBS, pH 7.4). The trans-well permeability rates through Caco-2 monolayer during 180 min, was determined to be 4.5%, 61% and 99% for resveratrol, PLGA-RSV and PLGA-FA-RSV respectively. The pathological analysis of the rat intestinal sections (hematoxylin & eosin staining) at 7th day post-TNBS colonic inflammation induction illustrated that the oral administrations of FA-PLGA-RSV and PLGA-RSV were able to significantly inhibit the inflammation and reduce neutrophil and lymphocytes accumulation. It is worth noting that the folate-targeted system demonstrated highest efficacy in suppressing colon inflammation. SIGNIFICANCE It could be concluded that the encapsulation of resveratrol into biodegradable folate-targeted PLGA nanoparticles could introduce a potent platform in suppressing colonic inflammation thus offering a great capability for clinical translation.
Collapse
|
9
|
Machado ND, Fernández MA, Díaz DD. Recent Strategies in Resveratrol Delivery Systems. Chempluschem 2020; 84:951-973. [PMID: 31943987 DOI: 10.1002/cplu.201900267] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Indexed: 12/31/2022]
Abstract
Resveratrol, a natural polyphenolic stilbenoid widely found in grapes and wines, displays beneficial properties such as cardio-protective, antioxidant and anti-inflammatory activities. Trans-resveratrol (RSV) is the most bioactive and more abundant stereoisomer found in nature. Despite the positive properties of RSV, there are various factors that limit its effectiveness, including low aqueous solubility, low oral bioavailability and chemical instability. During the last years, an increasing number of strategies such as nano and micro encapsulation have been developed in order to overcome these limitations and enhance the use of RSV in nutritional and pharmaceutical applications. This Review summarizes the advances and main properties of several RSV carriers and delivery systems reported during the last 5 years.
Collapse
Affiliation(s)
- Noelia D Machado
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Química Orgánica, Ciudad Universitaria, X5000HUA, Cordoba, Argentina.,Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, X5000HUA, Cordoba, Argentina
| | - Mariana A Fernández
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Química Orgánica, Ciudad Universitaria, X5000HUA, Cordoba, Argentina.,Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Ciudad Universitaria, X5000HUA, Cordoba, Argentina
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse. 31, 93040, Regensburg, Germany.,Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
10
|
Pure Trans-Resveratrol Nanoparticles Prepared by A Supercritical Antisolvent Process Using Alcohol and Dichloromethane Mixtures: Effect of Particle Size on Dissolution and Bioavailability in Rats. Antioxidants (Basel) 2020; 9:antiox9040342. [PMID: 32331478 PMCID: PMC7222356 DOI: 10.3390/antiox9040342] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to prepare pure trans-resveratrol nanoparticles without additives (surfactants, polymers, and sugars) using a supercritical antisolvent (SAS) process with alcohol (methanol or ethanol) and dichloromethane mixtures. In addition, in order to investigate the effect of particle size on the dissolution and oral bioavailability of the trans-resveratrol, two microparticles with different sizes (1.94 μm and 18.75 μm) were prepared using two different milling processes, and compared to trans-resveratrol nanoparticles prepared by the SAS process. The solid-state properties of pure trans-resveratrol particles were characterized. By increasing the percentage of dichloromethane in the solvent mixtures, the mean particle size of trans-resveratrol was decreased, whereas its specific surface area was increased. The particle size could thus be controlled by solvent composition. Trans-resveratrol nanoparticle with a mean particle size of 0.17 μm was prepared by the SAS process using the ethanol/dichloromethane mixture at a ratio of 25/75 (w/w). The in vitro dissolution rate of trans-resveratrol in fasted state-simulated gastric fluid was significantly improved by the reduction of particle size, resulting in enhanced oral bioavailability in rats. The absolute bioavailability of trans-resveratrol nanoparticles was 25.2%. The maximum plasma concentration values were well correlated with the in vitro dissolution rate. These findings clearly indicate that the oral bioavailability of trans-resveratrol can be enhanced by preparing pure trans-resveratrol nanoparticles without additives (surfactants, polymers, and sugars) by the SAS process. These pure trans-resveratrol nanoparticles can be applied as an active ingredient for the development of health supplements, pharmaceutical products, and cosmetic products.
Collapse
|
11
|
Improvement of Resveratrol Effects When Combined with Rice Oil in Rat Models of Inflammation. Inflammation 2019; 43:204-219. [PMID: 31720991 DOI: 10.1007/s10753-019-01110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of systemic treatment with a new formulation of resveratrol (RSV) vehicled in rice oil (RSVO) in experimental rat models of inflammation. Male Wistar rats were evaluated in the following in vivo models: carrageenan-induced acute edema, complete Freund's adjuvant (CFA)-evoked sub-chronic edema, and CFA-induced polyarthritis. The animals were treated orally with RSVO (10-15 mg/kg) or RSV (100-200 mg/kg), depending on the experimental protocol. RSV was more effective than RSVO in carrageenan-elicited acute edema when dosed in either prophylactic or therapeutic schemes of administration. However, the repeated RSVO administration, at 10-fold lower doses, exhibited superior anti-inflammatory actions in either the sub-chronic edema or the chronic polyarthritis model elicited by CFA, when compared with RSV. The novel formulation RSVO displayed a lower plasma biotransformation when compared with the RSV-treated group-46% versus 88% of metabolites, respectively. RSVO also prevented polyarthritis-related cartilage destruction, an effect that might rely on the inhibition of the pro-inflammatory cytokine interleukin-6 (IL-6), associated with an increase of the anti-inflammatory cytokine interleukin-10 (IL-10). Noteworthy, the long-term administration of RSVO did not elicit any gastrointestinal harm. Our study revealed that RSVO was notably effective in the long-term inflammatory and degenerative responses triggered by CFA. This innovative formulation might well represent a promising alternative for treating chronic inflammatory diseases, such as arthritis.
Collapse
|
12
|
Preparation and Evaluation of Resveratrol-Loaded Composite Nanoparticles Using a Supercritical Fluid Technology for Enhanced Oral and Skin Delivery. Antioxidants (Basel) 2019; 8:antiox8110554. [PMID: 31739617 PMCID: PMC6912748 DOI: 10.3390/antiox8110554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
We created composite nanoparticles containing hydrophilic additives using a supercritical antisolvent (SAS) process to increase the solubility and dissolution properties of trans-resveratrol for application in oral and skin delivery. Physicochemical properties of trans-resveratrol-loaded composite nanoparticles were characterized. In addition, an in vitro dissolution-permeation study, an in vivo pharmacokinetic study in rats, and an ex vivo skin permeation study in rats were performed. The mean particle size of all the composite nanoparticles produced was less than 300 nm. Compared to micronized trans-resveratrol, the trans-resveratrol/hydroxylpropylmethyl cellulose (HPMC)/poloxamer 407 (1:4:1) nanoparticles with the highest flux (0.792 μg/min/cm2) exhibited rapid absorption and showed significantly higher exposure 4 h after oral administration. Good correlations were observed between in vitro flux and in vivo pharmacokinetic data. The increased solubility and flux of trans-resveratrol generated by the HPMC/surfactant nanoparticles increased the driving force on the gastrointestinal epithelial membrane and rat skin, resulting in enhanced oral and skin delivery of trans-resveratrol. HPMC/surfactant nanoparticles produced by an SAS process are, thus, a promising formulation method for trans-resveratrol for healthcare products (owing to their enhanced absorption via oral administration) and for skin application with cosmetic products.
Collapse
|
13
|
Hu C, Li L. The application of resveratrol to mesenchymal stromal cell-based regenerative medicine. Stem Cell Res Ther 2019; 10:307. [PMID: 31623691 PMCID: PMC6798337 DOI: 10.1186/s13287-019-1412-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, the transplantation of mesenchymal stromal cells (MSCs) has emerged as an effective strategy to protect against tissue and organ injury. MSC transplantation also serves as a promising therapy for regenerative medicine, while poor engraftment and limited survival rates are major obstacles for its clinical application. Although multiple studies have focused on investigating chemicals to improve MSC stemness and differentiation in vitro and in vivo, there is still a shortage of effective and safe agents for MSC-based regenerative medicine. Resveratrol (RSV), a nonflavonoid polyphenol phytoalexin with a stilbene structure, was first identified in the root extract of white hellebore and is also found in the roots of Polygonum cuspidatum, and it is widely used in traditional Chinese medicine. RSV is a natural agent that possesses great therapeutic potential for protecting against acute or chronic injury in multiple tissues as a result of its antioxidative, anti-inflammatory, and anti-cancer properties. According to its demonstrated properties, RSV may improve the therapeutic effects of MSCs via enhancing their survival, self-renewal, lineage commitment, and anti-aging effects. In this review, we concluded that RSV significantly improved the preventive and therapeutic effects of MSCs against multiple diseases. We also described the underlying mechanisms of the effects of RSV on the survival, self-renewal, and lineage commitment of MSCs in vitro and in vivo. Upon further clarification of the potential mechanisms of the effects of RSV on MSC-based therapy, MSCs may be able to be more widely used in regenerative medicine to promote recovery from tissue injury.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
14
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|
16
|
Gumireddy A, Christman R, Kumari D, Tiwari A, North EJ, Chauhan H. Preparation, Characterization, and In vitro Evaluation of Curcumin- and Resveratrol-Loaded Solid Lipid Nanoparticles. AAPS PharmSciTech 2019; 20:145. [PMID: 30887133 DOI: 10.1208/s12249-019-1349-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/23/2019] [Indexed: 12/16/2022] Open
Abstract
Curcumin and resveratrol are natural compounds with significant anticancer activity; however, their bioavailability is limited due to poor solubility. This study aimed to overcome the solubility problem by means of solid lipid nanoparticles (SLN). 2-Hydroxypropyl β-cyclodextrin (HPβCD) was selected from a range of polymers based on miscibility and molecular interactions. SLNs were obtained by probe sonication and freeze-drying curcumin-resveratrol with/without HPβCD incorporated in gelucire 50/13. SLNs were characterized by dynamic light scattering (DLS), zeta potential, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and physical stability. The in vitro release of drugs from the SLNs was performed by the direct dispersion method and analyzed using a validated UV-visible method. In vitro efficacy was tested using a colorectal cancer cell line. Curcumin-resveratrol-gelucire 50/13-HPβCD (CRG-CD) and curcumin-resveratrol-gelucire 50/13(CRG) SLNs showed a particle size from 100 to 150 nm and were not in the crystalline state per PXRD results. MDSC results complimented PXRD results by the absence of melting endotherm of curcumin; TGA showed no weight loss, confirming the absence of organic solvent residual, and the shape of the SLNs was confirmed as spherical by SEM. CRG SLNs were stable for 21 days with respect to particle size and zeta potential. MTT assay indicated better IC50 value for CRG as compared to CRG-CD. Hence, novel SLNs of curcumin and resveratrol incorporated in gelucire 50/13 and HPβCD were prepared and characterized to improve their bioavailability and anticancer activity.
Collapse
|
17
|
Resveratrol-Linoleate protects from exacerbated endothelial permeability via a drastic inhibition of the MMP-9 activity. Biosci Rep 2018; 38:BSR20171712. [PMID: 29921577 PMCID: PMC6066651 DOI: 10.1042/bsr20171712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
Gelatinolytic matrix metalloproteinases (MMP-2, -9) play a critical role not only in mammals physiology but also during inflammation and healing processes. The natural stilbenoid, resveratrol (RES), exhibits potent antioxidant effects, in a hormetic mode of action, and is known to inhibit MMP-9. However, RES administration exhibits major issues, including poor bioavailability and water solubility, hampering its potential therapeutic effect in vivo. In the present study, we synthesized and evaluated five novel RES–lipid conjugates to increase their cell membrane penetration and improve their bioavailability. The best in vitro MMP-9 inhibitory activity of RES–lipids conjugates was observed with RES-linoleic acid (LA) (5 µM), when dissolved in a natural deep eutectic solvent (NADES), composed of an equimolar content of 1,2-propanediol:choline chloride (ChCl):water. The inhibition of MMP-9 expression by RES-LA in activated THP-1 monocytes, was, at least due to the deactivation of ERK1/2 and JNK1/2 MAP kinase signaling pathways. Moreover, RES-LA exhibited a strong effect protecting the TNF-α-induced exacerbated permeability in an HUVEC in vitro monolayer (by 81%) via the integrity protection of intercellular junction proteins from the MMP-9 activity. This effect was confirmed by using several complementary approaches including, the real-time monitoring of trans-endothelial electric resistance (TEER), the Transwell HUVEC permeability level, the microscopic examination of the platelet endothelial cell adhesion molecule-1 (CD31/PECAM-1) integrity as well as the fluorescence in intercellular spaces. Consequently, following this strong in vitro proof-of-concept, there is a need to test this promising RES–lipid derivative compound to control the pathological endothelial permeability in vivo.
Collapse
|
18
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
19
|
Li TP, Wong WP, Chen LC, Su CY, Chen LG, Liu DZ, Ho HO, Sheu MT. Physical and Pharmacokinetic Characterizations of trans-Resveratrol (t-Rev) Encapsulated with Self-Assembling Lecithin-based Mixed Polymeric Micelles (saLMPMs). Sci Rep 2017; 7:10674. [PMID: 28878397 PMCID: PMC5587738 DOI: 10.1038/s41598-017-11320-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
This study involved physical and pharmacokinetic characterizations of trans-resveratrol (t-Rev)-loaded saLMPMs which attempted to improve t-Rev’s pharmacokinetic profiles and bioavailability resolving hurdles limiting its potential health benefits. The optimal formulation consisted of t-Rev, lecithin, and Pluronic® P123 at 5:2:20 (t-Rev-loaded PP123 saLMPMs) provided mean particle size <200 nm, encapsulation efficiency >90%, and drug loading >15%. Compared to t-Rev solubilized with HP-β-CD, t-Rev-loaded PP123 saLMPMs enhanced t-Rev’s stability in PBS at RT, 4 °C, and 37 °C and in FBS at 37 °C, and retarded the in vitro release. Intravenous administration of t-Rev-loaded PP123 saLMPMs was able to enhance 40% absolute bioavailability and a greater portion of t-Rev was found to preferably distribute into peripheral compartment potentially establishing a therapeutic level at the targeted site. With oral administration, t-Rev-loaded LMPMs increases 2.17-fold absolute bioavailability and furnished a 3-h period of time in which the plasma concentration maintained above the desirable concentration for chemoprevention and accomplished a higher value of the dose-normalized area under the curve for potentially establishing an effective level at the target site. Therefore, intravenous and oral pharmacokinetic characteristics of t-Rev encapsulated with PP123 saLMPMs indicate that t-Rev can be translated into a clinically useful therapeutic agent.
Collapse
Affiliation(s)
- Tzu-Pin Li
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wan-Ping Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ling-Chun Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.,Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Chia-Yu Su
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology, and Biopharmaceutics, National Chiayi University, Chiayi, Taiwan, ROC
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC. .,Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
20
|
Sun Q, Li W, Li H, Wang X, Wang Y, Niu X. Preparation, Characterization and Anti-Ulcer Efficacy of Sanguinarine Loaded Solid Lipid Nanoparticles. Pharmacology 2017; 100:14-24. [DOI: 10.1159/000454882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
|
21
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| |
Collapse
|
22
|
Wu YT, Cai MT, Chang CW, Yen CC, Hsu MC. Bioanalytical Method Development Using Liquid Chromatography with Amperometric Detection for the Pharmacokinetic Evaluation of Forsythiaside in Rats. Molecules 2016; 21:molecules21101384. [PMID: 27754467 PMCID: PMC6274433 DOI: 10.3390/molecules21101384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
An analytical method entailing high-performance liquid chromatography coupled with electrochemical detection was developed for determining forsythiaside (FTS) in rat plasma. Rat plasma samples were prepared through efficient trichloroacetic acid deproteination. FTS and the internal standard were chromatographically separated on a reversed-phase core-shell silica C18 column (100 mm × 2.1 mm, i.d. 2.6 μm), with a mobile phase consisting of an acetonitrile-0.05-M phosphate solution (11.8:88.2, v/v), at a flow rate of 400 μL/min. The calibration curve, with r² > 0.999, was linear in the 20-1000 ng/mL range. The intra- and interday precision were less than 9.0%, and the accuracy ranged from 94.5% to 106.5% for FTS. The results indicated that the newly developed HPLC-EC method is more sensitive than previous reported methods using UV detection, and this new analytical method is applied successfully for the pharmacokinetic study of FTS. The hydrogel delivery system can efficiently improve bioavailability and mean residual time for FTS, as evidenced by the 2.5- and 6.3-fold increase of the area under the curve and the extension of the half-life, respectively.
Collapse
Affiliation(s)
- Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Ting Cai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ching-Chi Yen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
23
|
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 2016; 7:52517-52529. [PMID: 27232756 PMCID: PMC5239570 DOI: 10.18632/oncotarget.9593] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer chemoprevention involves the use of different natural or biologic agents to inhibit or reverse tumor growth. Epidemiological and pre-clinical data suggest that various natural phytochemicals and dietary compounds possess chemopreventive properties, and in-vitro and animal studies support that these compounds may modulate signaling pathways involved in cell proliferation and apoptosis in transformed cells, enhance the host immune system and sensitize malignant cells to cytotoxic agents. Despite promising results from experimental studies, only a limited number of these compounds have been tested in clinical trials and have shown variable results. In this review, we summarize the data regarding select phytochemicals including curcumin, resveratrol, lycopene, folates and tea polyphenols with emphasis on the clinical evidence supporting the efficacy of these compounds in high-risk populations.
Collapse
Affiliation(s)
- Ritesh Kotecha
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - J. Luis Espinoza
- Department of Hematology Oncology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|