1
|
Zhao Y, Su X, He D. Codon Usage Analysis Reveals Distinct Evolutionary Patterns and Host Adaptation Strategies in Duck Hepatitis Virus 1 (DHV-1) Phylogroups. Viruses 2024; 16:1380. [PMID: 39339856 PMCID: PMC11437458 DOI: 10.3390/v16091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Duck hepatitis virus 1 (DHV-1) is a major threat to the global poultry industry, causing significant economic losses due to high mortality rates in young ducklings. To better understand the evolution and host adaptation strategies of DHV-1, we conducted a comprehensive codon usage analysis of DHV-1 genomes. Our phylogenetic analysis revealed three well-supported DHV-1 phylogroups (Ia, Ib, and II) with distinct genetic diversity patterns. Comparative analyses of the codon usage bias and dinucleotide abundance uncovered a strong preference for A/U-ended codons and a biased pattern of dinucleotide usage in the DHV-1 genome, with CG dinucleotides being extremely underrepresented. Effective number of codons (ENC) analysis indicated a low codon usage bias in the DHV-1 ORF sequences, suggesting adaptation to host codon usage preferences. PR2 bias, ENC plot, and neutrality analyses revealed that both mutation pressure and natural selection influence the codon usage patterns of DHV-1. Notably, the three DHV-1 phylogroups exhibited distinct evolutionary trends, with phylogroups Ia and Ib showing evidence of neutral evolution accompanied by selective pressure, while the phylogroup II evolution was primarily driven by random genetic drift. Comparative analysis of the codon usage indices (CAI, RCDI, and SiD) among the phylogroups highlighted significant differences between subgroups Ia and Ib, suggesting distinct evolutionary pressures or adaptations influencing their codon usage. These findings contribute to our understanding of DHV-1 evolution and host adaptation, with potential implications for the development of effective control measures and vaccines.
Collapse
Affiliation(s)
| | | | - Dongchang He
- Department of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| |
Collapse
|
2
|
S. Celina S, Černý J. Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts. PLoS One 2024; 19:e0302224. [PMID: 38662658 PMCID: PMC11045102 DOI: 10.1371/journal.pone.0302224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
Collapse
Affiliation(s)
- Seyma S. Celina
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Wu H, Li B, Miao Z, Hu L, Zhou L, Lu Y. Codon usage of host-specific P genotypes (VP4) in group A rotavirus. BMC Genomics 2022; 23:518. [PMID: 35842571 PMCID: PMC9288207 DOI: 10.1186/s12864-022-08730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08730-2.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Shueb M, Prasad SK, Suresh KP, Indrabalan UB, Beelagi MS, Shivamallu C, Silina E, Stupin V, Manturova N, Kollur SP, Shome BR, Achar RR, Patil SS. The first study on analysis of the codon usage bias and evolutionary analysis of the glycoprotein envelope E2 gene of seven Pestiviruses. Vet World 2022; 15:1857-1868. [PMID: 36185504 PMCID: PMC9394142 DOI: 10.14202/vetworld.2022.1857-1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIM Pestivirus, a genus of the Flaviviridae family, comprises viruses that affect bovines, sheep, and pigs. Symptoms, including hemorrhagic syndromes, abortion, respiratory complications, and deadly mucosal diseases, are produced in infected animals, which cause huge economic losses to the farmers. Bovine viral diarrhea virus-1, bovine viral diarrhea virus-2, classical swine fever virus, border disease virus, Bungowannah, Hobi-like, and atypical porcine pestivirus belonging to the Pestivirus genus were selected for the study. This study aimed to estimate the codon usage bias and the rate of evolution using the glycoprotein E2 gene. Furthermore, codon usage bias analysis was performed using publicly available nucleotide sequences of the E2 gene of all seven Pestiviruses. These nucleotide sequences might elucidate the disease epidemiology and facilitate the development of designing better vaccines. MATERIALS AND METHODS Coding sequences of the E2 gene of Pestiviruses A (n = 89), B (n = 60), C (n = 75), D (n = 10), F (n = 07), H (n = 52), and K (n = 85) were included in this study. They were analyzed using different methods to estimate the codon usage bias and evolution. In addition, the maximum likelihood and Bayesian methodologies were employed to analyze a molecular dataset of seven Pestiviruses using a complete E2 gene region. RESULTS The combined analysis of codon usage bias and evolutionary rate analysis revealed that the Pestiviruses A, B, C, D, F, H, and K have a codon usage bias in which mutation and natural selection have played vital roles. Furthermore, while the effective number of codons values revealed a moderate bias, neutrality plots indicated the natural selection in A, B, F, and H Pestiviruses and mutational pressure in C, D, and K Pestiviruses. The correspondence analysis revealed that axis-1 significantly contributes to the synonymous codon usage pattern. In this study, the evolutionary rate of Pestiviruses B, H, and K was very high. The most recent common ancestors of all Pestivirus lineages are 1997, 1975, 1946, 1990, 2004, 1990, and 1990 for Pestiviruses A, B, C, D, F, H, and K, respectively. This study confirms that both mutational pressure and natural selection have played a significant role in codon usage bias and evolutionary studies. CONCLUSION This study provides insight into the codon usage bias and evolutionary lineages of pestiviruses. It is arguably the first report of such kind. The information provided by the study can be further used to elucidate the respective host adaptation strategies of the viruses. In turn, this information helps study the epidemiology and control methods of pestiviruses.
Collapse
Affiliation(s)
- Mohammad Shueb
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Mallikarjun S. Beelagi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Deb B, Uddin A, Chakraborty S. Analysis of codon usage of Horseshoe Bat Hepatitis B virus and its host. Virology 2021; 561:69-79. [PMID: 34171764 DOI: 10.1016/j.virol.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
In the present analysis, codon usage strategies and base distribution of Horseshoe bat hepatitis B virus (HBHBV) were analyzed and compared with its host Rhinolophus sinicus, as no work was yet reported. The magnitude of synonymous codon usage bias (CUB) in the virus and its host was low with higher proportion of the base C. Notably, 21 more frequently used codons, 19 less frequently used codons and 3 underrepresented codons (TCG, ACG and GCG) were found to be similar in both virus and its host coding sequences. Neutrality plot analysis reported greater role of natural selection in HBHBV (67.84%) and R. sinicus (76.90%) over mutation pressure. Base skewness and protein properties also influenced the CUB of genes. Further, codon usage analysis depicted, HBHBV and R. sinicus had many similarities in codon usage patterns that might reflect viral adaptation to its host.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India.
| |
Collapse
|
6
|
Gupta S, Paul K, Roy A. Codon usage signatures in the genus Cryptococcus: A complex interplay of gene expression, translational selection and compositional bias. Genomics 2020; 113:821-830. [PMID: 33096254 DOI: 10.1016/j.ygeno.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
The fungal genus Cryptococcus comprises of several diverse species. The pathogens forming Cryptococcus neoformans/ Cryptococcus gatti species complex are of immense clinical significance owing to the high frequency of infections and deaths globally. Three closely related non-pathogenic species namely, Cryptococcus amylolentus, Cryptococcus wingfieldii and Cryptococcus depauperatus are the non-pathogenic ancestral species from which pathogenic lineages have diverged. In the current study, a comprehensive analysis of factors influencing the codon and amino acid usage bias in six pathogenic and three non-pathogenic species was performed. Our results revealed that though compositional bias played a crucial role, translational selection and gene expression were the key determinants of codon usage variations. Analysis of relative dinucleotide abundance and codon context signatures revealed strict avoidance of TpA dinucleotide across genomes. Multivariate statistical analysis based on codon usage data resulted in discrete clustering of pathogens and non-pathogens which correlated with previous reports on their phylogenetic distribution.
Collapse
Affiliation(s)
- Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144001, India
| | - Ayan Roy
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
7
|
Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J Virol Methods 2020; 277:113806. [PMID: 31911390 PMCID: PMC7119019 DOI: 10.1016/j.jviromet.2019.113806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
The nucleotide variations among the N genes of 13 different coronaviruses (CoVs) were interpreted. Overall, 18 amino acids observed with varying preferred codons. The effective number of codon values ranged from 40.43 to 53.85, revealing a slight codon bias. A highly significant correlation between GC3s and ENc values was observed in porcine epidemic diarrhea CoV, followed by Middle East respiratory syndrome CoV.
The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus’s genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus’s host adaptation, evolution and is thus of value to vaccine design strategies.
Collapse
Affiliation(s)
- Abdullah Sheikh
- The Camel Research Center, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdullah I Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Comprehensive profiling of codon usage signatures and codon context variations in the genus Ustilago. World J Microbiol Biotechnol 2019; 35:118. [DOI: 10.1007/s11274-019-2693-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/07/2019] [Indexed: 02/02/2023]
|
9
|
Tao J, Yao H. Comprehensive analysis of the codon usage patterns of polyprotein of Zika virus. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:43-49. [PMID: 31054849 DOI: 10.1016/j.pbiomolbio.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 02/25/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus in the family Flaviviridae, and the massive outbreak of ZIKV has endangered public health. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. In this study, 90 ZIKV isolates were used for a comprehensive analysis on the codon usage patterns. The overall codon usage among ZIKV strains is similar and slightly biased. The value of effective number of codons (ENC) showed that the overall extent of codon usage bias in ZIKV is relatively low. Nucleotide analysis showed that the overall codon usage is biased toward A- and G-ending codons. The phylogenetic analysis indicated that their independent evolutionary origins from a common ancestor. The RSCU analysis showed that the codon usage pattern of ZIKV is more similar to that of Homo sapiens. Correlation analysis, Correspondence analysis, ENC-GC3S plot, and PR2 plot indicated that the codon usage patterns of the viruses are not only influenced by mutational pressure but also by natural selection, but neutrality plot analysis showed that the latter plays a major role. These results built the base for further research on the molecular evolution of ZIKV.
Collapse
Affiliation(s)
- Jun Tao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, PR China
| | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, PR China.
| |
Collapse
|
10
|
Gun L, Haixian P, Yumiao R, Han T, Jingqi L, Liguang Z. Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species. INFECTION GENETICS AND EVOLUTION 2018; 65:430-435. [PMID: 30179716 DOI: 10.1016/j.meegid.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
The influenza A H7N9 virus is a highly contagious virus which can only infect poultry before early 2013. But after that time, it widely caused human infections in China and brought Southeast Asia great threaten in the public health area. The coding gene for polymerase basic protein 2 (PB2) in influenza A H7N9 virus encodes the PB2 protein, which is a part of the RNA polymerase. The enzyme lacks a correction function during its own replication process, so the mutation frequency of the influenza A H7N9 virus gene is high and the PB2 gene is also included. To investigate the codon usages characteristics of PB2 gene, gene sequences of 12 kinds of poultry are downloaded form the gene bank (NCBI) and their codon usage characteristics such as the effective number of codons (ENC), the evolutionary relationship of the sequences, the codon adaptation index (CAI), the correspondence analysis (COA), the relative synonymous codon usage (RSCU) and their PR2-bias are compared and studied. The value of these reults showed that there is a low codon usage bias in the PB2 gene. Then, the differences between the codon usages of PB2 gene from 12 kinds of poultry are compared and their potential applications are discussed. These results could lay a foundation for other further study on the evolution of H7N9.
Collapse
Affiliation(s)
- Li Gun
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China.
| | - Pan Haixian
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Ren Yumiao
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Tian Han
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Lu Jingqi
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Zhang Liguang
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| |
Collapse
|
11
|
Wang H, Liu S, Zhang B, Wei W. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts. PLoS One 2016; 11:e0166260. [PMID: 27893824 PMCID: PMC5125587 DOI: 10.1371/journal.pone.0166260] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts.
Collapse
Affiliation(s)
- Hongju Wang
- Medical School of Henan University, Kaifeng, China
| | - Siqing Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenqiang Wei
- Medical School of Henan University, Kaifeng, China
| |
Collapse
|
12
|
van Hemert F, van der Kuyl AC, Berkhout B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. J Gen Virol 2016; 97:2608-2619. [PMID: 27519195 DOI: 10.1099/jgv.0.000579] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We are interested in the influence of nucleotide composition on the fundamental characteristics of the virus RNA genome. Most RNA viruses have genomes with a distinct nucleotide composition, e.g. ranging from minimally 12.9 % to maximally 40.3 % (C- and U-count, respectively, in coronavirus HKU). We present a global analysis of diverse virus types, including plus-strand, minus-strand and double-strand RNA viruses, for the impact of this nucleotide preference on the predicted structure of the RNA genome that is packaged in virion particles and on the codon usage in the viral open reading frames. Several virus-specific features will be described, but also some general conclusions were drawn. Without exception, the virus-specific nucleotide bias was enriched in the unpaired, single-stranded regions of the RNA genome, thus creating an even more striking virus-specific signature. We present a simple mechanism that is based on elementary aspects of RNA structure folding to explain this general trend. In general, the nucleotide bias was the major determinant of the virus-specific codon usages, thus limiting a role for codon selection and translational control. We will discuss molecular and evolutionary scenarios that may be responsible for the diverse nucleotide biases of RNA viruses.
Collapse
Affiliation(s)
- Formijn van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
13
|
Uddin A, Chakraborty S. Codon usage trend in mitochondrial CYB gene. Gene 2016; 586:105-14. [DOI: 10.1016/j.gene.2016.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/11/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
|
14
|
Nasrullah I, Butt AM, Tahir S, Idrees M, Tong Y. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol Biol 2015; 15:174. [PMID: 26306510 PMCID: PMC4550055 DOI: 10.1186/s12862-015-0456-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. RESULTS Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. CONCLUSIONS To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
Collapse
Affiliation(s)
- Izza Nasrullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Azeem M Butt
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, 53700, Pakistan.
| | - Shifa Tahir
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France. .,CNRS, UMR7247, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, Tours, F-37380, France.
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, 53700, Pakistan.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|