1
|
Uno K, Uchino T, Suzuki T, Sayama Y, Edo N, Uno-Eder K, Morita K, Ishikawa T, Koizumi M, Honda H, Katagiri H, Tsukamoto K. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. PLoS Biol 2025; 23:e3002955. [PMID: 39854351 PMCID: PMC11759367 DOI: 10.1371/journal.pbio.3002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoki Edo
- Teikyo Academic Research Center, Tokyo, Japan
| | | | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
4
|
Effect of a 6-week strength-training program on neuromuscular efficiency in type 2 diabetes mellitus patients. Diabetol Int 2020; 11:376-382. [PMID: 33088645 DOI: 10.1007/s13340-020-00432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
Background The neuromuscular system generates human movement. The functional capacity of the neuromuscular system in patients with type 2 diabetes mellitus (T2DM) is decreased and this affects the generation of muscle force. Exercise is recommended as an effective treatment in such cases. Short-duration strength training causes neural adaptations in healthy participants, but the effects of strength training on T2DM are unclear. The present study aimed to evaluate the effect of strength training on neuromuscular efficiency of lower limb muscles in T2DM. Methods Surface electromyograms (SEMG) of the knee flexors and extensors were recorded during isometric contractions. The ratio of peak torque to SEMG amplitude was calculated as neuromuscular efficiency. Measurements were taken before the intervention after 6 weeks of non-training, and after 6 weeks of strength training. Results SEMG amplitudes did not differ among the subsequent measurement sessions. Flexor and extensor peak torque increased after the strength-training program. The neuromuscular efficiency of all muscles increased after the 6 weeks of strength training. Conclusion A 6-week strength-training program increased the neuromuscular efficiency and peak torque in patients with T2DM; however, the electrical properties of the muscles did not change. These results may be related to increased neural adaptations and motor learning in the early stages of strength training.
Collapse
|