1
|
Cao L, Duan L, Zhang R, Yang W, Yang N, Huang W, Chen X, Wang N, Niu L, Zhou W, Chen J, Li Y, Zhang Y, Liu J, Fan D, Liu H. Development and validation of an RBP gene signature for prognosis prediction in colorectal cancer based on WGCNA. Hereditas 2023; 160:10. [PMID: 36895014 PMCID: PMC9999506 DOI: 10.1186/s41065-023-00274-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) requires further investigation. METHODS Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression network analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further verified through the Human Protein Atlas (HPA) database and RT-qPCR. RESULTS One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of overall survival (P < 0.001; HR:3.682; CI:2.377-5.705) and ROC curves indicated it has an effective predictive performance (1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGEHOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of surgically resected CRC tissues. CONCLUSION Our research provides a depth insight of RBPs' role in CRC and the proposed signature are helpful to the personalized treatment and prognostic judgement.
Collapse
Affiliation(s)
- Lu Cao
- Department of Biomedical Engineering, Air Force Hospital of Eastern Theater Command, 210001, Nanjing, Jiangsu Province, China
| | - Lili Duan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Rui Zhang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ning Yang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Wenzhe Huang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Xuemin Chen
- College of Otolaryngology and Head and Neck Surgery, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Ministry of Education, Beijing, China
| | - Nan Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liaoran Niu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Junfeng Chen
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yiding Li
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Jinqiang Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Daiming Fan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Hong Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Willmer AR, Nie J, De la Rosa MVG, Wen W, Dunne S, Rosania GR. Molecular design of a pathogen activated, self-assembling mechanopharmaceutical device. J Control Release 2022; 347:620-631. [PMID: 35623493 PMCID: PMC9901583 DOI: 10.1016/j.jconrel.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023]
Abstract
Weakly basic small molecule drugs like clofazimine can be used as building blocks for endowing cells with unnatural structural and functional elements. Here, we describe how clofazimine represents a first-in-class mechanopharmaceutical device, serving to construct inert, inactive and stimulus responsive drug depots within the endophagolysosomal compartment of cells of living organisms. Upon oral administration, clofazimine molecules self-assemble into stable, membrane-bound, crystal-like drug inclusions (CLDI) that accumulate within macrophages to form a "smart" biocompatible, pathogen activatable mechanopharmaceutical device. Upon perturbation of the mechanism maintaining pH and ion homeostasis of these CLDIs, the inert encapsulated drug precipitates are destabilized, releasing bioactive drug molecules into the cell and its surrounding. The resulting increase in clofazimine solubility activates this broad-spectrum antimicrobial, antiparasitic, antiviral or cytotoxic agent within the infected macrophage. We present a general, molecular design strategy for using clofazimine and other small molecule building blocks for the cytoplasmic construction of mechanopharmaceutical devices, aimed at rapid deployment during infectious disease outbreaks, for the purpose of pandemic prevention.
Collapse
Affiliation(s)
- Andrew R. Willmer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA,Corresponding author: Andrew R. Willmer, PharmD, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, Phone: 734-536-3383,
| | - Jiayi Nie
- Department of Biostatistics, University of Southern California, Los Angeles, CA 90089, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Winnie Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven Dunne
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Shin HJ, Jo MJ, Jin IS, Park CW, Kim JS, Shin DH. Optimization and Pharmacokinetic Evaluation of Synergistic Fenbendazole and Rapamycin Co-Encapsulated in Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles. Int J Nanomedicine 2021; 16:4873-4889. [PMID: 34295160 PMCID: PMC8291852 DOI: 10.2147/ijn.s315782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose We aimed to develop a nanocarrier formulation incorporating fenbendazole (FEN) and rapamycin (RAPA) with strong efficacy against A549 cancer cells. As FEN and RAPA are poorly soluble in water, it is difficult to apply them clinically in vivo. Therefore, we attempted to resolve this problem by encapsulating these drugs in polymeric micelles. Methods We evaluated drug synergy using the combination index (CI) values of various molar ratios of FEN and RAPA. We formed and tested micelles composed of different polymers. Moreover, we conducted cytotoxicity, stability, release, pharmacokinetic, and biodistribution studies to investigate the antitumor effects of FEN/RAPA-loaded mPEG-b-PCL micelles. Results We selected mPEG-b-PCL-containing FEN and RAPA at a molar ratio of 1:2 because these particles were consistent in size and had high encapsulation efficiency (EE, %) and drug loading (DL, %) capacity. The in vitro cytotoxicity was assessed for various FEN, RAPA, and combined FEN/RAPA formulations. After long-term exposures, both the solutions and the micelles had similar efficacy against A549 cancer cells. The in vivo pharmacokinetic study revealed that FEN/RAPA-loaded mPEG-b-PCL micelles had a relatively higher area under the plasma concentration–time curve from 0 to 2 h (AUC0–2 h) and 0 to 8 h (AUC0–8 h) and plasma concentration at time zero (Co) than that of the FEN/RAPA solution. The in vivo biodistribution assay revealed that the IV injection of FEN/RAPA-loaded mPEG-b-PCL micelles resulted in lower pulmonary FEN concentration than the IV injection of the FEN/RAPA solution. Conclusion When FEN and RAPA had a 1:2 molar ratio, they showed synergism. Additionally, using data from in vitro cytotoxicity, synergism between a 1:2 molar ratio of FEN and RAPA was observed in the micelle formulation. The FEN/RAPA-loaded mPEG-b-PCL micelle had enhanced bioavailability than the FEN/RAPA solution.
Collapse
Affiliation(s)
- Hee Ji Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| |
Collapse
|
4
|
A new therapeutic combination for osteosarcoma: Gemcitabine and Clofazimine co-loaded liposomal formulation. Int J Pharm 2018; 557:97-104. [PMID: 30586631 DOI: 10.1016/j.ijpharm.2018.12.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
Osteosarcoma is the most common cancer in bone. Drug resistance is a challenge of current treatments that needs to be improved with novel treatment strategies. In this research, a new dual drug delivery system was developed with Gemcitabine (GEM) and Clofazimine (CLF) co-loaded liposome formulations. GEM is a well-known anticancer agent and CLF is a leprostatic and anti-inflammatory drug recently recognized as effective on cancer. GEM and CLF co-loaded liposomal formulation was achieved with compartmentalization as hydrophilic GEM being in core and lipophilic CLF sequestering in lipid-bilayer. Liposomes had high encapsulation efficiency (above 90%, GEM and above 80%, CLF). CLF release was enhanced while GEM release was slowed down in co-loaded liposomes compared to single cases. GEM/CLF co-loaded liposomes significantly enhanced cytotoxicity than GEM or CLF loaded liposomes on osteosarcoma cell line. CLF and GEM had synergistic effect (CI < 1). Results of flow cytometry showed higher apoptotic cell ratio, caspase-3 activity, mitochondrial membrane depolarized cells' ratio for GEM/CLF co-loaded liposome treatments than other liposomes. Cytotoxicity of CLF on bone cancer cells and also its synergistic effect with GEM on osteosarcoma is reported for the first time with this study. CLF's loading with GEM into liposome was also a new approach for enhancement of anticancer effect on Saos-2 cells. Therefore, GEM/CLF co-loaded liposomal delivery system is proposed as a novel approach for treatment of osteosarcoma.
Collapse
|
5
|
Gaio E, Conte C, Esposito D, Miotto G, Quaglia F, Moret F, Reddi E. Co-delivery of Docetaxel and Disulfonate Tetraphenyl Chlorin in One Nanoparticle Produces Strong Synergism between Chemo- and Photodynamic Therapy in Drug-Sensitive and -Resistant Cancer Cells. Mol Pharm 2018; 15:4599-4611. [PMID: 30148955 DOI: 10.1021/acs.molpharmaceut.8b00597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer therapies based on the combinations of different drugs and/or treatment modalities are emerging as important strategies for increasing efficacy and cure, decreasing unwanted toxicity, and overcoming drug resistance, provided that optimized drug concentration ratios are delivered into the target tissue. To these purposes, delivery systems such as nanoparticles (NPs) offer the unique opportunity to finely tune the drug loading and the release rate of drug combinations in the target tissues. Here, we propose double-layered polymeric NPs for the delivery of the chemotherapeutic docetaxel (DTX) and the photosensitizer disulfonate tetraphenyl chlorin (TPCS2a) coated with hyaluronic acid (HA), which allows cell targeting via CD44 receptors. The simultaneous delivery of the two drugs aims at killing DTX-sensitive (HeLa-P, MDA-MB-231) and DTX-resistant (HeLa-R) cancer cells by combining chemotherapy and photodynamic therapy (PDT). Using the Chou and Talalay method that analyses drug interactions and calculates combination index (CI) using the median-effect principle, we compared the efficiency of DTX chemotherapy combined with TPCS2a-PDT for drugs delivered in the standard solvents, coloaded in the same NP (DTX/TPCS2a-NP) or loaded in separate NPs (DTX-NPs + TPCS2a-NPs). Along with the drug interaction studies, we gained insight into cell death mechanisms after combo-therapy and into the extent of TPCS2a intracellular uptake and localization. In all cell lines considered, the analysis of the viability data revealed synergistic drug/treatment interaction especially when DTX and TPCS2a were delivered to cells coloaded in the same NPs despite the reduced PS uptake measured in the presence of the delivery systems. In fact, while the combinations of the free drugs or drugs in separate NPs gave slight synergism (CI < 1) only at doses killing more than 50% of the cells, the combination of drugs in one NPs gave high synergism also at doses killing 10-20% of the cells. Furthermore, the DTX dose in the combination DTX/TPCS2a-NPs could be reduced by ∼2.6- and 10.7-fold in HeLa-P and MDA-MB-231, respectively. Importantly, drug codelivery in NPs was very efficient in inducing cell mortality also in DTX resistant HeLa-R cells overexpressing P-glycoprotein 1 in which the dose of the chemotherapeutic can be reduced by more than 100 times using DTX/TPCS2a-NPs. Overall, our data demonstrate that the protocol for the preparation of HA-targeted double layer polymeric NPs allows to control the concentration ratio of coloaded drugs and the delivery of the transported drugs for obtaining a highly synergistic interaction combining DTX-chemotherapy and TPCS2a-PDT.
Collapse
Affiliation(s)
- Elisa Gaio
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Giovanni Miotto
- Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Francesca Moret
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Elena Reddi
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| |
Collapse
|
6
|
Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:38276-38293. [PMID: 27542263 PMCID: PMC5503532 DOI: 10.18632/oncotarget.11299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries. Unfortunately, the overall 5-year survival rate is still less than 5%. The most frequent oncogenic mutations in PDAC are loss-of function mutations in p53 and gain-of-function mutations in KRAS. Here we show that clofazimine (Lamprene), a drug already used in the clinic for autoimmune diseases and leprosy, is able to efficiently kill in vitro five different PDAC cell lines harboring p53 mutations. We provide evidence that clofazimine induces apoptosis in PDAC cells with an EC50 in the μM range via its specific inhibitory action on the potassium channel Kv1.3. Intraperitoneal injection of clofazimine resulted in its accumulation in the pancreas of mice 8 hours after administration. Using an orthotopic PDAC xenotransplantation model in SCID beige mouse, we show that clofazimine significantly and strongly reduced the primary tumor weight. Thus, our work identifies clofazimine as a promising therapeutic agent against PDAC and further highlights ion channels as possible oncological targets.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Artur Gontarewitz
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Bernhard Linder
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Karen Legler
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
7
|
Durusu İZ, Hüsnügil HH, Ataş H, Biber A, Gerekçi S, Güleç EA, Özen C. Anti-cancer effect of clofazimine as a single agent and in combination with cisplatin on U266 multiple myeloma cell line. Leuk Res 2017; 55:33-40. [PMID: 28122281 DOI: 10.1016/j.leukres.2017.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 01/31/2023]
Abstract
Multiple Myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effect on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancer as well as melanoma, neuroblastoma, and leukemia. The objective of this study was to evaluate the anticancer effect and mechanism of CLF on U266 MM cell line. CLF (10μM, 24h) treatment resulted up to 72% growth suppression on a panel of hematological cell lines. Dose-response study conducted on U266 MM cell line revealed an IC50 value of 9.8±0.7μM. CLF also showed a synergistic inhibition effect in combination with cisplatin. In mechanistic assays, CLF treatment caused mitochondrial membrane depolarization, change in cell membrane asymmetry and increase in caspase-3 activity; indicating to an intrinsic apoptosis mechanism. This study provides new evidence for the anticancer effect of CLF on U266 cell line. Further in vivo and clinical studies are warranted to evaluate its therapeutic potential for MM treatment.
Collapse
Affiliation(s)
- İpek Z Durusu
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Hazal H Hüsnügil
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Heval Ataş
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Ayşenur Biber
- Middle East Technical University, Biotechnology Graduate Program, Üniversiteler Mahallesi Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Selin Gerekçi
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Ezgi A Güleç
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| | - Can Özen
- Middle East Technical University, Biotechnology Department and Center of Excellence in Biomaterials and Tissue Engineering and Central Laboratory, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, 06800 Çankaya Ankara, Turkey.
| |
Collapse
|