1
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
2
|
Dohadwala S, Geib MT, Politch JA, Anderson DJ. Innovations in monoclonal antibody-based multipurpose prevention technology (MPT) for the prevention of sexually transmitted infections and unintended pregnancy. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 5:1337479. [PMID: 38264184 PMCID: PMC10803587 DOI: 10.3389/frph.2023.1337479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Monoclonal antibodies (mAbs) are currently being produced for a number of clinical applications including contraception and the prevention of sexually transmitted infections (STIs). Combinations of contraceptive and anti-STI mAbs, including antibodies against HIV-1 and HSV-2, provide a powerful and flexible approach for highly potent and specific multipurpose prevention technology (MPT) products with desirable efficacy, safety and pharmacokinetic profiles. MAbs can be administered systemically by injection, or mucosally via topical products (e.g., films, gels, rings) which can be tailored for vaginal, penile or rectal administration to address the needs of different populations. The MPT field has faced challenges with safety, efficacy, production and cost. Here, we review the state-of-the-art of mAb MPTs that tackle these challenges with innovative strategies in mAb engineering, manufacturing, and delivery that could usher in a new generation of safe, efficacious, cost-effective, and scalable mAb MPTs.
Collapse
Affiliation(s)
- Sarah Dohadwala
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Matthew T. Geib
- Department of Material Science and Engineering, Boston University, Boston, MA, United States
| | - Joseph A. Politch
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Deborah J. Anderson
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Rai V, Kyser AJ, Goodin DA, Mahmoud MY, Steinbach-Rankins JM, Frieboes HB. Computational Modeling of Probiotic Recovery from 3D-Bioprinted Scaffolds for Localized Vaginal Application. ANNALS OF 3D PRINTED MEDICINE 2023; 11:100120. [PMID: 37583971 PMCID: PMC10424195 DOI: 10.1016/j.stlm.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Lactobacilli, play a beneficial role in the female reproductive tract (FRT), regulating pH via lactic acid metabolism to help maintain a healthy environment. Bacterial vaginosis (BV) is characterized by a dysregulated flora in which anaerobes such as Gardnerella vaginalis (Gardnerella) create a less acidic environment. Current treatment focuses on antibiotic administration, including metronidazole, clindamycin, or tinidazole; however, lack of patient compliance as well as antibiotic resistance may contribute to 50% recurrence within a year. Recently, locally administered probiotics such as Lactobacillus crispatus (L. crispatus) have been evaluated as a prophylactic against recurrence. To mitigate the lack of patient compliance, sustained probiotic delivery has been proposed via 3D-bioprinted delivery vehicles. Successful delivery depends on a variety of vehicle fabrication parameters influencing timing and rate of probiotic recovery; detailed evaluation of these parameters would benefit from computational modeling complementary to experimental evaluation. This study implements a novel simulation platform to evaluate sustained delivery of probiotics from 3D-bioprinted scaffolds, taking into consideration bacterial lactic acid production and associated pH changes. The results show that the timing and rate of probiotic recovery can be realistically simulated based on fabrication parameters that affect scaffold degradation and probiotic survival. Longer term, the proposed approach could help personalize localized probiotic delivery to the FRT to advance women's health.
Collapse
Affiliation(s)
- Veeresh Rai
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Anthony J. Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Dylan A. Goodin
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, USA
| | - Mohamed Y. Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Jill M. Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- UofL-Health –Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Ashraf M, Ahammad SZ, Chakma S. Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64313-64341. [PMID: 37067715 PMCID: PMC10108824 DOI: 10.1007/s11356-023-26796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The study on the fate and transport of Pharmaceuticals and Personal Care Products, PPCPs (FTP) in the environment, has received particular attention for over two decades. The PPCPs threaten ecology and human health even at low concentrations due to their synergistic effects and long-range transport. The research aims to provide an inclusive map of the scientific background of FTP research over the last 25 years, from 1996 to 2020, to identify the main characteristics, evolution, salient research themes, trends, and research hotspots in the field of interest. Bibliometric networks were synthesized and analyzed for 577 journal articles extracted from the Scopus database. Consequently, seven major themes of FTP research were identified as follows: (i) PPCPs category; (ii) hazardous effects; (iii) occurrence of PPCPs; (iv) PPCPs in organisms; (v) remediation; (vi) FTP-governing processes; and (vii) assessment in the environment. The themes gave an in-depth picture of the sources of PPCPs and their transport and fate processes in the environment, which originated from sewage treatment plants and transported further to sediment/soils/groundwater/oceans that act as the PPCPs' major sink. The article provided a rigorous analysis of the research landscape in the FTP study conducted during the specified years. The prominent research themes, content analysis, and research hotspots identified in the study may serve as the basis of real-time guidance to lead future research areas and a prior review for policymakers and practitioners.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
5
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
6
|
Yeruva SL, Kumar P, Deepa S, Kondapi AK. Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection. Nanomedicine (Lond) 2021; 16:569-586. [PMID: 33660529 DOI: 10.2217/nnm-2020-0347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. Materials & methods: TCNPs were subjected to various physicochemical characterization experiments, followed by in vitro and in vivo experiments to assess their efficacy. Results: TCNPs had a diameter of 74.31 ± 2.56 nm with a gross encapsulation of more than 61% for each drug. Nanoparticles were effective against HIV-1 replication, with an IC50 of 1.75 μM for curcumin and 2.8 μM for tenofovir. TCNPs provided drug release at the application site for up to 8-12 h, with minimal leakage into the systemic circulation. TCNPs showed spermicidal activity at ≥200 μM and induced minimal cytotoxicity and inflammation in the vaginal epithelium as revealed by histopathological and ELISA studies. Conclusion: We demonstrated that TCNPs could serve as a novel anti-HIV microbicidal agent in rats. [Formula: see text].
Collapse
Affiliation(s)
- Samrajya Lakshmi Yeruva
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Prashant Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Pediatrics, The University of Tennessee Health Science Center & Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Seetharam Deepa
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Urology, University of Miami, Florida, FL 33136, USA
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
7
|
Sodium bicarbonate gels: a new promising strategy for the treatment of vulvovaginal candidosis. Eur J Pharm Sci 2021; 157:105621. [PMID: 33122009 DOI: 10.1016/j.ejps.2020.105621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Vulvovaginal candidosis (VVC), caused mainly by the yeast Candida albicans, is the second most prevalent vaginal infection. It has been found to have a large impact on women's quality of life, self-esteem and routines. The prevalence of recurrent vulvovaginal candidosis (RVVC) remains high so the development of alternative treatments is needed. The main objective of this study was to develop and characterize sodium bicarbonate gels to treat VVC. We described key formulation characteristics and analyzed their influence on in vitro performance evaluations. The potential to inhibit Candida albicans's growth, the pH, osmolality, viscosity and rheological performance in contact with vaginal fluid simulant and the bioadhesion's profile (using a vaginal ex vivo porcine model) were studied for all formulations. Among the formulations, formulation C (5% sodium bicarbonate, 1% carbomer and 94% water) was the most effective in inhibiting the C. albicans' growth. This gel presented the same potential (the same MIC 2.5%) to inhibit other etiological agents of VVC (C. glabrata, C. krusei, C. tropicalis and C. parapsilosis) for all species tested. Additionally, sensorial characteristics of gel C were in accord with users' preferences. This gel exhibited physicochemical characteristics acceptable for short term treatments, suggesting good overall performance for the treatment of VVC. Furthermore, Gel C was biocompatible with the HeLa cell line (MTT assay) and was classified as a non-severe irritant in the HET-CAM assay (irritation score 4 ± 1). Overall, gel C was deemed the best performing of the set tested, and suitable for further development.
Collapse
|
8
|
Vartak R, Patki M, Menon S, Jablonski J, Mediouni S, Fu Y, Valente ST, Billack B, Patel K. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. Int J Pharm 2020; 589:119863. [DOI: 10.1016/j.ijpharm.2020.119863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
|
9
|
Deducing Mucosal Pharmacokinetics and Pharmacodynamics of the Anti-HIV Molecule Tenofovir from Measurements in Blood. Sci Rep 2019; 9:82. [PMID: 30643165 PMCID: PMC6331591 DOI: 10.1038/s41598-018-36004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Microbicide pharmacokinetic (PK) studies typically sample drug in luminal fluid, mucosal tissue, and blood. Blood measurements can be conducted most frequently, serially within subjects. Antiretroviral drugs, however, act against HIV in mucosal tissue/cells. We computationally modeled the extent measurements in blood can predict concentrations in tissue, focusing on the antiretroviral drug tenofovir delivered by a vaginal gel. Deterministic PK models input host and product factors and output spatiotemporal drug concentrations in luminal fluid, epithelium, stroma/host cells, and blood. Pharmacodynamic (PD) analysis referenced stroma/host cell concentrations to prophylactic values; summary metrics were time from product insertion to protection (tlag) and degree of protection (PPmax). Results incorporated host factors characteristic of population variability. Neural nets (NN) linked simulated blood PK metrics (Cmax, tmax, AUC, C24) to mucosal PK/PD metrics. The NNs delivered high-performance mapping of these multiparametric relationships. Given multi-log variability typical of biopsy data for tenofovir and other topical microbicides, results suggest downstream but higher fidelity measurements in blood could help improve determination of PK and create inferences about PD. Analysis here is for a tenofovir gel, but this approach offers promise for application to other microbicide modalities and to topical drug delivery to vaginal mucosa more generally.
Collapse
|
10
|
Vaginal Gel Component Hydroxyethyl Cellulose Significantly Enhances the Infectivity of Chlamydia trachomatis Serovars D and E. Antimicrob Agents Chemother 2018; 63:AAC.02034-18. [PMID: 30373805 DOI: 10.1128/aac.02034-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
The transmission of the urogenital serovars of Chlamydia trachomatis can be significantly influenced by vaginal gels. Hydroxyethyl cellulose is a commonly used gelling agent that can be found in vaginal gels. Hydroxyethyl cellulose showed a concentration-dependent growth-enhancing effect on C. trachomatis serovars D and E, with a 26.1-fold maximal increase in vitro and a 2.57-fold increase in vivo.
Collapse
|
11
|
Sims LB, Miller HA, Halwes ME, Steinbach-Rankins JM, Frieboes HB. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases. Eur J Pharm Biopharm 2018; 138:37-47. [PMID: 30195726 DOI: 10.1016/j.ejpb.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
The secreted mucus layer in the vaginal epithelium presents a formidable barrier to the transport of active agents for the prevention and treatment of female reproductive tract (FRT) infections. Nanoparticle-mediated drug delivery has been proposed to help facilitate the transport and release of active agents through the cervicovaginal mucus (CVM) and underlying mucosa. However, both nanoparticles (NPs) and free active agents face a variety of challenges, often requiring the administration of high localized doses to circumvent leakage and poor penetration to targeted intravaginal tissue compartments. To address these challenges, "stealth" NP modifications have been investigated, due to their favorable mucus-penetrating properties, resulting in improved intravaginal active agent retention and transport. A number of other NP characteristics including size, surface modification type, ligand density, and co-modification, as well as the complexity of the FRT tissue are involved in obtaining adequate tissue penetration and, if needed, cell internalization. Studies that systematically investigate variations of these characteristics have yet to be conducted, with the goal to obtain a better understanding of what properties most impact prophylactic and therapeutic benefit. To complement the progress made with experimental evaluation of active agent transport in in vitro and in vivo, mathematical modeling has recently been applied to analyze the transport performance of agents and delivery vehicles in the FRT. Here, we build upon this work to simulate NP transport through mucus gel, epithelial, and stromal compartments, with the goal to provide a platform that can systematically evaluate transport based on NP and tissue characteristics. Model parameters such as PEG density and NP release (decay) rate from mucus gel into the epithelium, are set from previous in vitro and in vivo experimental work that assessed the transport of poly(lactic-co-glycolic acid (PLGA) NPs. The modeling results show that while unmodified and 2% PEG-modified NPs were retained in mucus for ∼1-4 h, dependent upon decay constant values, and traverse to the epithelium, no NP penetration was observed in the stroma. In contrast, NPs modified with 3% PEG, exhibited prolonged retention in each compartment, remaining for ∼4-6 h. Moreover, a significant concentration of NPs is observed in the stroma, indicating a transition in transport behavior. For NPs modified with 5, 8, or 25% PEG, steady retention profiles were noted, which gradually decline over 24 h. To supplement this modeling study and to develop a more representative experimental system that may be useful in future work, we report on the feasibility of constructing single and multicellular layered (MCL) culture systems to represent the epithelial and stromal tissue of the FRT. We anticipate that a combined mathematical/experimental approach may longer term enable prediction and customization of patient tissue-specific approaches to attain effective NP-mediated drug delivery and release for the treatment of infectious disease.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Hunter A Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Michael E Halwes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
12
|
Abstract
Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lisa Cencia Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Presnell AL, Chuchuen O, Simons MG, Maher JR, Katz DF. Full depth measurement of tenofovir transport in rectal mucosa using confocal Raman spectroscopy and optical coherence tomography. Drug Deliv Transl Res 2018; 8:843-852. [PMID: 29468424 PMCID: PMC6042643 DOI: 10.1007/s13346-018-0495-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prophylactic activity of antiretroviral drugs applied as microbicides against sexually transmitted HIV is dependent upon their concentrations in infectable host cells. Within mucosal sites of infection (e.g., vaginal and rectal mucosa), those cells exist primarily in the stromal layer of the tissue. Traditional pharmacokinetic studies of these drugs have been challenged by poor temporal and spatial specificity. Newer techniques to measure drug concentrations, involving Raman spectroscopy, have been limited by laser penetration depth into tissue. Utilizing confocal Raman spectroscopy (RS) in conjunction with optical coherence tomography (OCT), a new lateral imaging assay enabled concentration distributions to be imaged with spatial and temporal specificity throughout the full depth of a tissue specimen. The new methodology was applied in rectal tissue using a clinical rectal gel formulation of 1% tenofovir (TFV). Confocal RS revealed diffusion-like behavior of TFV through the tissue specimen, with significant partitioning of the drug at the interface between the stromal and adipose tissue layers. This has implications for drug delivery to infectable tissue sites. The new assay can be applied to rigorously analyze microbicide transport and delineate fundamental transport parameters of the drugs (released from a variety of delivery vehicles) throughout the mucosa, thus informing microbicide product design.
Collapse
Affiliation(s)
- Aubrey L Presnell
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Oranat Chuchuen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Morgan G Simons
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Maher
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - David F Katz
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Sims LB, Frieboes HB, Steinbach-Rankins JM. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling. Int J Nanomedicine 2018; 13:2709-2727. [PMID: 29760551 PMCID: PMC5937491 DOI: 10.2147/ijn.s160044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date – whereby transport parameters are determined, extrapolated, and validated – is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Halwes ME, Tyo KM, Steinbach-Rankins JM, Frieboes HB. Computational Modeling of Antiviral Drug Diffusion from Poly(lactic- co-glycolic-acid) Fibers and Multicompartment Pharmacokinetics for Application to the Female Reproductive Tract. Mol Pharm 2018; 15:1534-1547. [PMID: 29481088 DOI: 10.1021/acs.molpharmaceut.7b01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The need for more versatile technologies to deliver antiviral agents to the female reproductive tract (FRT) has spurred the development of on-demand and sustained-release platforms. Electrospun fibers (EFs), in particular, have recently been applied to FRT delivery, resulting in an alternative dosage form with the potential to provide protection and therapeutic effect against a variety of infection types. However, a multitude of fabrication parameters, as well as the resulting complexities of solvent-drug, drug-polymer, and solvent-polymer interactions, are known to significantly impact the loading and release of incorporated agents. Numerous processing parameters, in addition to their combined interactions, can hinder the iterative development of fiber formulations to achieve optimal release for particular durations, doses, and polymer-drug types. The experimental effort to design and develop EFs could benefit from mathematical analysis and computational simulation that predictively evaluate combinations of parameters to meet product design needs. Here, existing modeling efforts are leveraged to develop a simulation platform that correlates and predicts the delivery of relevant small molecule antivirals from EFs that have been recently applied to target sexually transmitted infections (STIs). A pair of mathematical models is coupled to simulate the release of two structurally similar small molecule antiretroviral reverse transcriptase inhibitors, Tenofovir (TFV) and Tenofovir disoproxil fumarate (TDF), from poly(lactic- co-glycolic acid) (PLGA) EFs, and to evaluate how changes in the system parameters affect the distribution of encapsulated agent in a three-compartment model of the vaginal epithelium. The results indicate that factors such as fiber diameter, mesh thickness, antiviral diffusivity, and fiber geometry can be simulated to create an accurate model that distinguishes the different release patterns of TFV and TDF from EFs, and that enables detailed evaluation of the associated pharmacokinetics. This simulation platform offers a basis with which to further study EF parameters and their effect on antiviral release and pharmacokinetics in the FRT.
Collapse
Affiliation(s)
- Michael E Halwes
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| | | | - Jill M Steinbach-Rankins
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| | - Hermann B Frieboes
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
16
|
Kaur A, Gupta S, Tyagi A, Sharma RK, Ali J, Gabrani R, Dang S. Development of Nanoemulsion Based Gel Loaded with Phytoconstituents for the Treatment of Urinary Tract Infection and in Vivo Biodistribution Studies. Adv Pharm Bull 2017; 7:611-619. [PMID: 29399551 PMCID: PMC5788216 DOI: 10.15171/apb.2017.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/30/2017] [Accepted: 12/10/2017] [Indexed: 12/23/2022] Open
Abstract
Purpose: A nanoemulsion based gel containing Polyphenon 60 (P60) and cranberry (CRB) has been developed to deliver via intravaginal route for the treatment of urinary tract infection. Methods: Polyphenon 60 and cranberry were loaded in a single nanoemulsion gel (NBG) by ultra-sonication method and characterized for particle size, rheological properties, in vitro release and growth curve analysis. P60+CRB NBG were radiolabelled using technetium pertechnetate (99mTc) to perform in vivo pharmacokinetic studies in animals. Results: The finalized NE had a droplet size of 58±1 nm. In vitro release of 90.92 ± 0.6% in 8 hr for P60 and 99.39 ± 0.5% in 6 hr for CRB was observed in simulated vaginal fluid. Growth curve of E. coli indicated the inhibitory action of nanoemulsion based gel at the fifth hour of inoculation. Gamma scintigraphy studies on female Sprague-Dawley rats showed transport of nanoemulsion based gel from the vaginal cavity into the systemic circulation. Further, biodistribution studies with radiolabelled P60+CRB NBG showed significant higher uptake of radiolabelled actives by kidney (3.20±0.16) and urinary bladder (3.64±0.29), when administered intravaginally. Conclusion: The findings suggested 99mTc-P60+CRB NBG can potentially be transported through vaginal cavity and reach the target organs and showed effective distribution in organs affected in urinary tract infection
Collapse
Affiliation(s)
- Atinderpal Kaur
- Department of Biotechnology, Jaypee Institute of Information Tehnology, A-10, Sector 62, Noida, UP 201307, India
| | - Sonal Gupta
- Department of Biotechnology, Jaypee Institute of Information Tehnology, A-10, Sector 62, Noida, UP 201307, India
| | - Amit Tyagi
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Rakesh Kumar Sharma
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Javed Ali
- Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Tehnology, A-10, Sector 62, Noida, UP 201307, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Tehnology, A-10, Sector 62, Noida, UP 201307, India
| |
Collapse
|
17
|
Ariza-Sáenz M, Espina M, Bolaños N, Calpena AC, Gomara MJ, Haro I, García ML. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur J Pharm Biopharm 2017; 120:98-106. [DOI: 10.1016/j.ejpb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 01/24/2023]
|
18
|
Pathak M, Coombes AGA, Ryu B, Cabot PJ, Turner MS, Palmer C, Wang D, Steadman KJ. Sustained Simultaneous Delivery of Metronidazole and Doxycycline From Polycaprolactone Matrices Designed for Intravaginal Treatment of Pelvic Inflammatory Disease. J Pharm Sci 2017; 107:863-869. [PMID: 29100864 DOI: 10.1016/j.xphs.2017.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022]
Abstract
Poly(ɛ-caprolactone) (PCL) intravaginal matrices were produced for local delivery of a combination of antibacterials, by rapidly cooling a mixture of drug powders dispersed in PCL solution. Matrices loaded with different combinations of metronidazole (10%, 15%, and 20% w/w) and doxycycline (10% w/w) were evaluated in vitro for release behavior and antibacterial activity. Rapid "burst release" of 8%-15% of the doxycycline content and 31%-37% of the metronidazole content occurred within 24 h when matrices were immersed in simulated vaginal fluid at 37°C. The remaining drug was extracted gradually over 14 days to a maximum of 65%-73% for doxycycline and 62%-71% for metronidazole. High levels of antibacterial activity up to 89%-91% against Gardnerella vaginalis and 84%-92% against Neisseria gonorrhoeae were recorded in vitro for release media collected on day 14, compared to "nonformulated" metronidazole and doxycycline solutions. Based on the in vitro data, the minimum levels of doxycycline and metronidazole released from PCL matrices in the form of intravaginal rings into vaginal fluid in vivo were predicted to exceed the minimum inhibitory concentrations for N. gonorrhea (reported range 0.5-4.0 μg/mL) and G. vaginalis (reported range 2-12.8 μg/mL) respectively, which are 2 of the major causative agents for pelvic inflammatory disease.
Collapse
Affiliation(s)
- Meenakshi Pathak
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia.
| | - Allan G A Coombes
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - BoMi Ryu
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Peter J Cabot
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Mark S Turner
- The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Cheryn Palmer
- Princess Alexandra Hospital, Department of Sexual Health, Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | - Dongjie Wang
- The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Kathryn J Steadman
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
19
|
Chuchuen O, Maher JR, Henderson MH, Desoto M, Rohan LC, Wax A, Katz DF. Label-free analysis of tenofovir delivery to vaginal tissue using co-registered confocal Raman spectroscopy and optical coherence tomography. PLoS One 2017; 12:e0185633. [PMID: 28961280 PMCID: PMC5621692 DOI: 10.1371/journal.pone.0185633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023] Open
Abstract
Vaginally applied microbicide products offer a female-controlled strategy for preventing sexual transmission of HIV. Microbicide transport processes are central to their functioning, and there is a clear need for a better understanding of them. To contribute to that end, we developed an assay to analyze mass transport rates of microbicide molecules within the epithelial and stromal layers of polarized vaginal mucosal tissue during contact with a gel vehicle. The assay utilizes a new diffusion chamber mounted in a custom instrument that combines confocal Raman spectroscopy and optical coherence tomography. This measures depth-resolved microbicide concentration distributions within epithelium and stroma. Data for a tenofovir gel were fitted with a compartmental diffusion model to obtain fundamental transport properties: the molecular diffusion and partition coefficients in different compartments. Diffusion coefficients in epithelium and stroma were computed to be 6.10 ± 2.12 x 10-8 and 4.52 ± 1.86 x 10-7 cm2/sec, respectively. The partition coefficients between epithelium and gel and between stroma and epithelium were found to be 0.53 ± 0.15 and 1.17 ± 0.16, respectively. These drug transport parameters are salient in governing the drug delivery performance of different drug and gel vehicle systems. They can be used to contrast drugs and vehicles during product design, development and screening. They are critical inputs to deterministic transport models that predict the gels' pharmacokinetic performance, which can guide improved design of products and optimization of their dosing regimens.
Collapse
Affiliation(s)
- Oranat Chuchuen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jason R. Maher
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Marcus H. Henderson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Michael Desoto
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - David F. Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Khandalavala K, Mandal S, Pham R, Destache CJ, Shibata A. Nanoparticle Encapsulation for Antiretroviral Pre-Exposure Prophylaxis. JOURNAL OF NANOTECHNOLOGY AND MATERIALS SCIENCE 2017; 4:53-61. [PMID: 29881781 PMCID: PMC5987555 DOI: 10.15436/2377-1372.17.1583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV continues to be one of the greatest challenges facing the global health community. More than 36 million people currently live with HIV and, in 2015 2.1 million new infections were reported globally. Pre-Exposure Prophylaxis (PrEP) prevents HIV infection by inhibiting viral entry, replication, or integration at the primary site of pathogenic contraction. Failures of large antiretroviral drug (ARV) PrEP clinical trials indicate the current insufficiencies of PrEP for women in high-risk areas, such as sub-Saharan Africa. A combination of social, adherence, and drug barriers create these insufficiencies and limit the efficacy of ARV. Nanotechnology offers the promise of extended drug release and enhances bioavailability of ARVs when encapsulated in polymeric nano-particles. Nanoparticle encapsulation has been evaluated in vitro in comparative studies to drug solutions and exhibit higher efficacy and lower cytotoxicity profiles. Delivery systems for nanoparticle PrEP facilitate administration of nano-encapsulated ARVs to high-risk tissues. In this mini-review, we summarize the comparative nanoparticle and drug solution studies and the potential of two delivery methods: thermosensitive gels and polymeric nanoparticle films for direct prophylactic applications.
Collapse
Affiliation(s)
| | - Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, 68178, USA
| | - Rachel Pham
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | | | | |
Collapse
|
21
|
Gao Y, Katz DF. Multicompartmental Pharmacokinetic Model of Tenofovir Delivery to the Rectal Mucosa by an Enema. PLoS One 2017; 12:e0167696. [PMID: 28114388 PMCID: PMC5256988 DOI: 10.1371/journal.pone.0167696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Rectal enemas that contain prophylactic levels of anti-HIV microbicides such as tenofovir have emerged as a promising dosage form to prevent sexually transmitted HIV infections. The enema vehicle is promising due to its likely ability to deliver a large amount of drug along the length of the rectal canal. Computational models of microbicide drug delivery by enemas can help their design process by determining key factors governing drug transport and, more specifically, the time history and degree of protection. They can also inform interpretations of experimental pharmacokinetic measures such as drug concentrations in biopsies. The present work begins rectal microbicide PK modeling, for enema vehicles. Results here show that a paramount factor in drug transport is the time of enema retention; direct connectivity between enema fluid and the fluid within rectal crypts is also important. Computations of the percentage of stromal volume protected by a single enema dose indicate that even with only a minute of enema retention, protection of 100% can be achieved after around 14 minutes post dose. Concentrations in biopsies are dependent on biopsy thickness; and control and/or knowledge of thickness could improve accuracy and decrease variability in biopsy measurements. Results here provide evidence that enemas are a promising dosage form for rectal microbicide delivery, and offer insights into their rational design.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - David F. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
22
|
Chuchuen O, Maher JR, Simons MG, Peters JJ, Wax AP, Katz DF. Label-Free Measurements of Tenofovir Diffusion Coefficients in a Microbicide Gel Using Raman Spectroscopy. J Pharm Sci 2016; 106:639-644. [PMID: 27837968 DOI: 10.1016/j.xphs.2016.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 02/05/2023]
Abstract
Confocal Raman spectroscopy was implemented in a new label-free technique to quantify molecular diffusion coefficients within gels. A leading anti-HIV drug, tenofovir, was analyzed in a clinical microbicide gel. The gel was tested undiluted, and in 10%-50% wt/wt dilutions with vaginal fluid simulant to capture the range of conditions likely occurring in vivo. The concentration distributions of tenofovir in gel over time and space were measured and input to a mathematical diffusion model to deduce diffusion coefficients. These were 3.16 ± 0.11 × 10-6 cm2/s in undiluted gel, and increased by 11%-46% depending on the extent of dilution. Results were interpreted with respect to traditional release rate measurements in devices such as Franz cells. This comparison highlighted an advantage of our assay in that it characterizes the diffusive barrier within the gel material itself; in contrast, release rate in the traditional assay is affected by external conditions, such as drug partitioning at the gel/liquid sink interface. This new assay is relevant to diffusion in polymeric hydrogels over pharmacologically relevant length scales, for example, those characteristic of topical drug delivery. Resulting transport parameters are salient measures of drug delivery potential, and serve as inputs to computational models of drug delivery performance.
Collapse
Affiliation(s)
- Oranat Chuchuen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Jason R Maher
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Morgan G Simons
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Jennifer J Peters
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Adam P Wax
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - David F Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina 27708.
| |
Collapse
|
23
|
Meng J, Agrahari V, Ezoulin MJ, Zhang C, Purohit SS, Molteni A, Dim D, Oyler NA, Youan BBC. Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations. Mol Pharm 2016; 13:4129-4140. [PMID: 27700124 DOI: 10.1021/acs.molpharmaceut.6b00739] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is hypothesized that thiolated chitosan (TCS) core/shell nanofibers (NFs) can enhance the drug loading of tenofovir, a model low molecular weight and highly water-soluble drug molecule, and improve its mucoadhesivity and in vivo safety. To test this hypothesis, poly(ethylene oxide) (PEO) core with TCS and polylactic acid (PLA) shell NFs are fabricated by a coaxial electrospinning technique. The morphology, drug loading, drug release profiles, cytotoxicity and mucoadhesion of the NFs are analyzed using scanning and transmission electron microscopies, liquid chromatography, cytotoxicity assays on VK2/E6E7 and End1/E6E7 cell lines and Lactobacilli crispatus, fluorescence imaging and periodic acid colorimetric method, respectively. In vivo safety studies are performed in C57BL/6 mice followed by H&E and immunohistochemical (CD45) staining analysis of genital tract. The mean diameters of PEO, PEO/TCS, and PEO/TCS-PLA NFs are 118.56, 9.95, and 99.53 nm, respectively. The NFs exhibit smooth surface. The drug loading (13%-25%, w/w) increased by 10-fold compared to a nanoparticle formulation due to the application of the electrospinning technique. The NFs are noncytotoxic at the concentration of 1 mg/mL. The PEO/TCS-PLA core/shell NFs mostly exhibit a release kinetic following Weibull model (r2 = 0.9914), indicating the drug release from a matrix system. The core/shell NFs are 40-60-fold more bioadhesive than the pure PEO based NFs. The NFs are nontoxic and noninflammatory in vivo after daily treatment for up to 7 days. Owing to their enhanced drug loading and preliminary safety profile, the TCS core/shell NFs are promising candidates for the topical delivery of HIV/AIDS microbicides such as tenofovir.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Vivek Agrahari
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Miezan J Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Chi Zhang
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Sudhaunshu S Purohit
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Agostino Molteni
- School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Daniel Dim
- School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| |
Collapse
|
24
|
Halwes ME, Steinbach-Rankins JM, Frieboes HB. Pharmacokinetic modeling of a gel-delivered dapivirine microbicide in humans. Eur J Pharm Sci 2016; 93:410-8. [DOI: 10.1016/j.ejps.2016.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
|
25
|
Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release 2016; 243:43-53. [PMID: 27664327 DOI: 10.1016/j.jconrel.2016.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Combining two or more antiretroviral drugs in one medical product is an interesting but challenging strategy for developing topical anti-HIV microbicides. We developed a new vaginal delivery system comprising the incorporation of nanoparticles (NPs) into a polymeric film base - NPs-in-film - and tested its ability to deliver tenofovir (TFV) and efavirenz (EFV). EFV-loaded poly(lactic-co-glycolic acid) NPs were incorporated alongside free TFV into fast dissolving films during film manufacturing. The delivery system was characterized for physicochemical properties, as well as genital distribution, local and systemic 24h pharmacokinetics (PK), and safety upon intravaginal administration to mice. NPs-in-film presented suitable technological, mechanical and cytotoxicity features for vaginal use. Retention of NPs in vivo was enhanced both in vaginal lavages and tissue when associated to film. PK data evidenced that vaginal drug levels rapidly decreased after administration but NPs-in-film were still able to enhance drug concentrations of EFV. Obtained values for area-under-the-curve for EFV were around one log10 higher than those for the free drugs in aqueous vehicle (phosphate buffered saline). Film alone also contributed to higher and more prolonged local drug levels as compared to the administration of TFV and EFV in aqueous vehicle. Systemic exposure to both drugs was low. NPs-in-film was found to be safe upon once daily vaginal administration to mice, with no significant genital histological changes or major alterations in cytokine/chemokine profiles being observed. Overall, the proposed NPs-in-film system seems to be an interesting delivery platform for developing combination vaginal anti-HIV microbicides.
Collapse
|
26
|
Srinivasan P, Moss JA, Gunawardana M, Churchman SA, Yang F, Dinh CT, Mitchell JM, Zhang J, Fanter R, Miller CS, Butkyavichene I, McNicholl JM, Smith TJ, Baum MM, Smith JM. Topical Delivery of Tenofovir Disoproxil Fumarate and Emtricitabine from Pod-Intravaginal Rings Protects Macaques from Multiple SHIV Exposures. PLoS One 2016; 11:e0157061. [PMID: 27275923 PMCID: PMC4898685 DOI: 10.1371/journal.pone.0157061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
Topical preexposure prophylaxis (PrEP) against HIV has been marginally successful in recent clinical trials with low adherence rates being a primary factor for failure. Controlled, sustained release of antiretroviral (ARV) drugs may help overcome these low adherence rates if the product is protective for extended periods of time. The oral combination of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) is currently the only FDA-approved ARV drug for HIV PrEP. A novel pod-intravaginal ring (IVR) delivering TDF and FTC at independently controlled rates was evaluated for efficacy at preventing SHIV162p3 infection in a rigorous, repeat low-dose vaginal exposure model using normally cycling female pigtailed macaques. Six macaques received pod-IVRs containing TDF (65 mg) and FTC (68 mg) every two weeks, and weekly vaginal exposures to 50 TCID50 of SHIV162p3 began one week after the first pod-IVR insertion. All pod-IVR-treated macaques were fully protected throughout the study (P = 0.0002, Log-rank test), whereas all control animals became infected with a median of 4 exposures to infection. The topical, sustained release of TDF and FTC from the pod-IVR maintained protective drug levels in macaques over four months of virus exposures. This novel and versatile delivery system has the capacity to deliver and maintain protective levels of multiple drugs and the protection observed here warrants clinical evaluation of this pod-IVR design.
Collapse
Affiliation(s)
- Priya Srinivasan
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Scott A. Churchman
- Auritec Pharmaceuticals, Inc., Pasadena, California, United States of America
| | - Flora Yang
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Chuong T. Dinh
- Total Solutions, Inc., Atlanta, Georgia, United States of America
| | - James M. Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jining Zhang
- Total Solutions, Inc., Atlanta, Georgia, United States of America
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Christine S. Miller
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Irina Butkyavichene
- Auritec Pharmaceuticals, Inc., Pasadena, California, United States of America
| | - Janet M. McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Smith
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
- Auritec Pharmaceuticals, Inc., Pasadena, California, United States of America
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - James M. Smith
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Combination Pod-Intravaginal Ring Delivers Antiretroviral Agents for HIV Prophylaxis: Pharmacokinetic Evaluation in an Ovine Model. Antimicrob Agents Chemother 2016; 60:3759-66. [PMID: 27067321 DOI: 10.1128/aac.00391-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/03/2016] [Indexed: 12/24/2022] Open
Abstract
Preexposure prophylaxis (PrEP) against HIV using oral regimens based on the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) has been effective to various degrees in multiple clinical trials, and the CCR5 receptor antagonist maraviroc (MVC) holds potential for complementary efficacy. The effectiveness of HIV PrEP is highly dependent on adherence. Incorporation of the TDF-MVC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described. The pharmacokinetics and preliminary local safety characteristics of a novel pod-IVR delivering a combination of TDF and MVC were evaluated in the ovine model. The device exhibited sustained release at controlled rates over the 28-day study and maintained steady-state drug levels in cervicovaginal fluids (CVFs). Dilution of CVFs during lavage sample collection was measured by ion chromatography using an inert tracer, allowing corrected drug concentrations to be measured for the first time. Median, steady-state drug levels in vaginal tissue homogenate were as follows: for tenofovir (TFV; in vivo hydrolysis product of TDF), 7.3 × 10(2) ng g(-1) (interquartile range [IQR], 3.0 × 10(2), 4.0 × 10(3)); for TFV diphosphate (TFV-DP; active metabolite of TFV), 1.8 × 10(4) fmol g(-1) (IQR, 1.5 × 10(4), 4.8 × 10(4)); and for MVC, 8.2 × 10(2) ng g(-1) (IQR, 4.7 × 10(2), 2.0 × 10(3)). No adverse events were observed. These findings, together with previous pod-IVR studies, have allowed several lead candidates to advance into clinical evaluation.
Collapse
|
28
|
Abstract
Gels are a drug delivery platform that is being evaluated for application of active pharmaceutical ingredients, termed microbicides, that act topically against vaginal and rectal mucosal infection by sexually transmitted HIV. Despite success in one Phase IIb trial of a vaginal gel delivering tenofovir, problems of user adherence to designed gel application scheduling have compromised results in two other trials. The microbicides field is responding to this dilemma by expanding behavioral analysis of the determinants of adherence while simultaneously improving the pharmacological, biochemical, and biophysical analyses of the determinants of microbicide drug delivery. The intent is to combine results of these two complementary perspectives on microbicide performance and epidemiological success to create an improved product design paradigm. Central to both user sensory perceptions and preferences, key factors that underlie adherence, and to vaginal gel mucosal drug delivery, that underlies anti-HIV efficacy, are gel properties (e.g. rheology) and volume. The specific engineering problem to be solved here is to develop a model for how gel rheology and volume, interacting with loaded drug concentration, govern the transport of the microbicide drug tenofovir into the vaginal mucosa to its stromal layer. These are factors that can be controlled in microbicide gel design. The analysis here builds upon our current understanding of vaginal gel deployment and drug delivery, incorporating key features of the gel's environment, the vaginal canal, fluid production and subsequent gel dilution, and vaginal wall elasticity. These have not previously been included in the modeling of drug delivery. We consider the microbicide drug tenofovir, which is the drug most completely studied for gels: in vitro, in animal studies in vivo, and in human clinical trials with both vaginal or rectal gel application. Our goal is to contribute to improved biophysical and pharmacological understanding of gel functionality, providing a computational tool that can be used in future vaginal microbicide gel design.
Collapse
|
29
|
Katz DF, Yuan A, Gao Y. Vaginal drug distribution modeling. Adv Drug Deliv Rev 2015; 92:2-13. [PMID: 25933938 PMCID: PMC4600641 DOI: 10.1016/j.addr.2015.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 01/03/2023]
Abstract
This review presents and applies fundamental mass transport theory describing the diffusion and convection driven mass transport of drugs to the vaginal environment. It considers sources of variability in the predictions of the models. It illustrates use of model predictions of microbicide drug concentration distribution (pharmacokinetics) to gain insights about drug effectiveness in preventing HIV infection (pharmacodynamics). The modeling compares vaginal drug distributions after different gel dosage regimens, and it evaluates consequences of changes in gel viscosity due to aging. It compares vaginal mucosal concentration distributions of drugs delivered by gels vs. intravaginal rings. Finally, the modeling approach is used to compare vaginal drug distributions across species with differing vaginal dimensions. Deterministic models of drug mass transport into and throughout the vaginal environment can provide critical insights about the mechanisms and determinants of such transport. This knowledge, and the methodology that obtains it, can be applied and translated to multiple applications, involving the scientific underpinnings of vaginal drug distribution and the performance evaluation and design of products, and their dosage regimens, that achieve it.
Collapse
Affiliation(s)
- David F Katz
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University, Durham, NC USA.
| | - Andrew Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yajing Gao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
Ham AS, Nugent ST, Peters JJ, Katz DF, Shelter CM, Dezzutti CS, Boczar AD, Buckheit KW, Buckheit RW. The rational design and development of a dual chamber vaginal/rectal microbicide gel formulation for HIV prevention. Antiviral Res 2015; 120:153-64. [PMID: 26093158 DOI: 10.1016/j.antiviral.2015.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The DuoGel™ was developed for safe and effective dual chamber administration of antiretroviral drugs to reduce the high incidence of HIV transmission during receptive vaginal and anal intercourse. The DuoGel™s containing IQP-0528, a non-nucleoside reverse transcriptase inhibitor (NNRTI), were formulated from GRAS excipients approved for vaginal and rectal administration. The DuoGel™s were evaluated based upon quantitative physicochemical and biological evaluations defined by a Target Product Profile (TPP) acceptable for vaginal and rectal application. From the two primary TPP characteristics defined to accommodate safe rectal administration three DuoGel™ formulations (IQB3000, IQB3001, and IQB3002) were developed at pH 6.00 and osmolality ⩽400mmol/kg. The DuoGel™s displayed no in vitro cellular or bacterial toxicity and no loss in viability in ectocervical and colorectal tissue. IQB3000 was removed from consideration due to reduced NNRTI delivery (∼65% reduction) and IQB3001 was removed due to increase spread resulting in leakage. IQB3002 containing IQP-0528 was defined as our lead DuoGel™ formulation, possessing potent activity against HIV-1 (EC50=10nM). Over 12month stability evaluations, IQB3002 maintained formulation stability. This study has identified a lead DuoGel™ formulation that will safely deliver IQP-0528 to prevent sexual HIV-1 transmission in the vagina and rectum.
Collapse
Affiliation(s)
| | | | | | | | - Cory M Shelter
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Charlene S Dezzutti
- University of Pittsburgh, Pittsburgh, PA 15213, USA; Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|