1
|
Dogaris I, Pylypchuk I, Henriksson G, Abbadessa A. Polyelectrolyte complexes based on a novel and sustainable hemicellulose-rich lignosulphonate for drug delivery applications. Drug Deliv Transl Res 2024; 14:3452-3466. [PMID: 38530607 PMCID: PMC11499397 DOI: 10.1007/s13346-024-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Polyelectrolyte complexes (PECs) are polymeric structures formed by the self-assembly of oppositely charged polymers. Novel biomaterials based on PECs are currently under investigation as drug delivery systems, among other applications. This strategy leverages the ability of PECs to entrap drugs under mild conditions and control their release. In this study, we combined a novel and sustainably produced hemicellulose-rich lignosulphonate polymer (EH, negatively charged) with polyethyleneimine (PEI) or chitosan (CH, positively charged) and agar for the development of drug-releasing PECs. A preliminary screening demonstrated the effect of several parameters (polyelectrolyte ratio, temperature, and type of polycation) on PECs formation. From this, selected formulations were further characterized in terms of thermal properties, surface morphology at the microscale, stability, and ability to load and release methylene blue (MB) as a model drug. EH/PEI complexes had a more pronounced gel-like behaviour compared to the EH/CH complexes. Differential scanning calorimetry (DSC) results supported the establishment of polymeric interactions during complexation. Overall, PECs' stability was positively affected by low pH, ratios close to 1:1, and the addition of agar. PECs with higher EH content showed a higher MB loading, likely promoted by stronger electrostatic interactions. The EH/CH formulation enriched with agar showed the best sustained release profile of MB during the first 30 h in a pH-dependent environment simulating the gastrointestinal tract. Overall, we defined the conditions to formulate novel PECs based on a sustainable hemicellulose-rich lignosulphonate for potential applications in drug delivery, which promotes the valuable synergy between sustainability and the biomedical field.
Collapse
Affiliation(s)
- Ioannis Dogaris
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Ievgen Pylypchuk
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, 10691, Sweden
| | - Gunnar Henriksson
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Anna Abbadessa
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Avenida Barcelona s/n, Santiago de Compostela, 15782, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Li Q, Byun J, Kim D, Wu Y, Lee J, Oh YK. Cell membrane-coated mRNA nanoparticles for enhanced delivery to dendritic cells and immunotherapy. Asian J Pharm Sci 2024; 19:100968. [PMID: 39640052 PMCID: PMC11617980 DOI: 10.1016/j.ajps.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines. However, their application is hindered by their inherent toxicity and a lack of targeted delivery capability. These issues need to be addressed to develop effective cancer vaccines. In this study, we investigated whether dendritic cell membrane-coated polyethylenimine/mRNA nanoparticles (DPN) could effectively deliver mRNA to dendritic cells and induce immune responses. For comparison, we employed red blood cell membrane-coated polyethylenimine/mRNA (RPN) and plain polyethylenimine/mRNA polyplex (PN). The dendritic cell membrane coating altered the zeta potential values and surface protein patterns of PN. DPN demonstrated significantly higher uptake in dendritic cells compared to PN and RPN, and it also showed greater mRNA expression within these cells. DPN, carrying mRNA encoding luciferase, enhanced green fluorescent protein, or ovalbumin (OVA), exhibited higher protein expression in dendritic cells than the other groups. Additionally, DPN exhibited favorable mRNA escape from lysosomes post-internalization into dendritic cells. In mice, subcutaneous administration of DPN containing ovalbumin mRNA (DPNOVA) elicited higher titers of anti-OVA IgG antibodies and a greater population of OVA-specific CD8+ T cells than the other groups. In a B16F10-OVA tumor model, DPNOVA treatment resulted in the lowest tumor growth among the treated groups. Moreover, the population of OVA-specific CD8+ T cells was the highest in the DPNOVA-treated group. While we demonstrated DPN's feasibility as an mRNA delivery system in a tumor model, the potential of DPN can be broadly extended for immunotherapeutic treatments of various diseases through mRNA delivery to antigen-presenting cells.
Collapse
Affiliation(s)
| | | | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Li H, Wu P. Epigenetics in thyroid cancer: a bibliometric analysis. Endocr Connect 2024; 13:e240087. [PMID: 38949925 PMCID: PMC11378139 DOI: 10.1530/ec-24-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Background Epigenetics, which involves regulatory modifications that do not alter the DNA sequence itself, is crucial in the development and progression of thyroid cancer. This study aims to provide a comprehensive analysis of the epigenetic research landscape in thyroid cancer, highlighting current trends, major research areas, and potential future directions. Methods A bibliometric analysis was performed using data from the Web of Science Core Collection (WOSCC) up to 1 November 2023. Analytical tools such as VOSviewer, CiteSpace, and the R package 'bibliometrix' were employed for comprehensive data analysis and visualization. This process identified principal research themes, along with influential authors, institutions, and countries contributing to the field. Results The analysis reveals a marked increase in thyroid cancer epigenetics research over the past two decades. Emergent key themes include the exploration of molecular mechanisms and biomarkers, various subtypes of thyroid cancer, implications for therapeutic interventions, advancements in technologies and methodologies, and the scope of translational research. Research hotspots within these themes highlight intensive areas of study and the potential for significant breakthroughs. Conclusion This study presents an in-depth overview of the current state of epigenetics in thyroid cancer research. It underscores the potential of epigenetic strategies as viable therapeutic options and provides valuable insights for researchers and clinicians in advancing the understanding and treatment of this complex disease. Future research is vital to fully leverage the therapeutic possibilities offered by epigenetics in the management of thyroid cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| | - Peng Wu
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| |
Collapse
|
4
|
Blasco S, Sukeník L, Vácha R. Nanoparticle induced fusion of lipid membranes. NANOSCALE 2024; 16:10221-10229. [PMID: 38679949 PMCID: PMC11138393 DOI: 10.1039/d4nr00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery via liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sofía Blasco
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
5
|
Pierce BG, Felbinger N, Metcalf M, Toth EA, Ofek G, Fuerst TR. Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development. Viruses 2024; 16:803. [PMID: 38793684 PMCID: PMC11125608 DOI: 10.3390/v16050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.
Collapse
Affiliation(s)
- Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathaniel Felbinger
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew Metcalf
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Kisakov DN, Belyakov IM, Kisakova LA, Yakovlev VA, Tigeeva EV, Karpenko LI. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines 2024; 23:102-123. [PMID: 38063059 DOI: 10.1080/14760584.2023.2292772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity. However, due to the different configurations of devices used for EP, EP protocols optimization is required not only to enhance immunogenicity, but also to ensure greater safety and tolerability of the EP procedure. AREA COVERED An data analysis for recent years on the DNA vaccines delivery against viral and parasitic infections using EP was carried out. The study of various EP physical characteristics, such as frequency, pulse duration, pulse interval, should be considered along with the immunogenic construct design and the site of delivery of the vaccine, through the study of the immunogenic and protective characteristics of the latter. EXPERT OPINION Future research should focus on regulating the humoral and cellular response required for protection against infectious agents by modifying the EP protocol. Significant efforts will be directed to establishing the possibility of redirecting the immune response toward the Th1 or Th2 response by changing the EP physical parameters. It will allow for an individual selective approach during EP, depending on the pathogen type of an infectious disease.
Collapse
Affiliation(s)
- Denis N Kisakov
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Igor M Belyakov
- Department of medico-biological disciplines, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - Lubov A Kisakova
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Vladimir A Yakovlev
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Elena V Tigeeva
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Larisa I Karpenko
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| |
Collapse
|
7
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
8
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Kana BD, Arbuthnot P, Botwe BK, Choonara YE, Hassan F, Louzir H, Matsoso P, Moore PL, Muhairwe A, Naidoo K, Ndomondo-Sigonda M, Madhi SA. Opportunities and challenges of leveraging COVID-19 vaccine innovation and technologies for developing sustainable vaccine manufacturing capabilities in Africa. THE LANCET. INFECTIOUS DISEASES 2023:S1473-3099(22)00878-7. [PMID: 37290473 DOI: 10.1016/s1473-3099(22)00878-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/10/2023]
Abstract
The COVID-19 pandemic heralded unprecedented resource mobilisation and global scientific collaboration to rapidly develop effective vaccines. Regrettably, vaccine distribution has been inequitable, particularly in Africa where manufacturing capacity remains nominal. To address this, several initiatives are underway to develop and manufacture COVID-19 vaccines in Africa. Nevertheless, diminishing demand for COVID-19 vaccines, the cost competitiveness of producing goods locally, intellectual property rights issues, and complex regulatory environments among other challenges can undermine these ventures. We outline how extending COVID-19 vaccine manufacturing in Africa to include diverse products, multiple vaccine platforms, and advanced delivery systems will ensure sustainability. Possible models, including leveraging public-academic-private partnerships to enhance success of vaccine manufacturing capacity in Africa are also discussed. Intensifying research in vaccine discovery on the continent could yield vaccines that further bolster sustainability of local production, ensuring greater pandemic preparedness in resource-constrained environments, and long-term health systems security.
Collapse
Affiliation(s)
- Bavesh D Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- South African Medical Research Council Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; African Network for Drugs and Diagnostics Innovation Centre of Excellence in Advanced Drug Delivery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fatima Hassan
- Health Justice Initiative, University of Cape Town School of Public Health and Family Medicine, Cape Town, South Africa
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Precious Matsoso
- Health Regulatory Science Platform, Wits Health Consortium, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Kubendran Naidoo
- South African Medical Research Council Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Health Laboratory Service, Johannesburg, South Africa
| | - Margareth Ndomondo-Sigonda
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; African Union Development Agency-New Partnership for Africa's Development, Midrand, South Africa
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
10
|
Bolhassani A. Lipid-Based Delivery Systems in Development of Genetic and Subunit Vaccines. Mol Biotechnol 2023; 65:669-698. [PMID: 36462102 PMCID: PMC9734811 DOI: 10.1007/s12033-022-00624-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
12
|
Pereira GC. Nanotechnology-Driven Delivery Systems in Inoculation Therapies. Methods Mol Biol 2023; 2575:39-57. [PMID: 36301470 DOI: 10.1007/978-1-0716-2716-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanotechnology and genomics are the newest allies of inoculation design. In recent years, nucleic acids have been targeted as sources of therapeutics to stimulate immune responses, to both fight disease and create memory to trigger further responses to threat. A myriad of promising findings in cancer research and virology has been reported in the current literature. Nanosystems are demonstrating their capabilities as efficient carriers, improving the efficacy of drug delivery, including nucleic acids as therapeutics, at focal sites, in living systems. This chapter approaches major elements involved in the successful use of nanotechnology as delivery platforms to optimise the efficacy of nucleic acids-driven therapeutics, particularly mRNA vectors as coding engines for targeted viral proteins. Latest findings in nanotechnological design are highlighted, key discoveries associated with the success of nanodelivery platforms are presented, and key characteristics of nanodelivery systems in nucleic acids-based vaccine technology are discussed, to illustrate their distinct advantages and disadvantages.
Collapse
|
13
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
14
|
Silva AJD, Rocha CKDS, de Freitas AC. Standardization and Key Aspects of the Development of Whole Yeast Cell Vaccines. Pharmaceutics 2022; 14:pharmaceutics14122792. [PMID: 36559285 PMCID: PMC9781213 DOI: 10.3390/pharmaceutics14122792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
In the context of vaccine development, improving antigenic presentation is critical for the activation of specific immune responses and the success of immunization, in addition to selecting an appropriate target. In this sense, different strategies have been developed and improved. Among them is the use of yeast cells as vehicles for the delivery of recombinant antigens. These vaccines, named whole yeast vaccines (WYVs), can induce humoral and cellular immune responses, with the additional advantage of dispensing with the use of adjuvants due to the immunostimulatory properties of their cell wall components. However, there are some gaps in the methodologies for obtaining and validating recombinant strains and vaccine formulations. The standardization of these parameters is an important factor for WYVs approval by regulatory agencies and, consequently, their licensing. This review aimed to provide an overview of the main parameters to consider when developing a yeast-based vaccine, addressing some available tools, and highlighting the main variables that can influence the vaccine production process.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81996067671
| |
Collapse
|
15
|
Kisakov DN, Kisakova LA, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Shcherbakov DN, Rudometov AP, Rudometova NB, Volkova NV, Gureev VN, Ilyichev AA, Karpenko LI. Optimization of In Vivo Electroporation Conditions and Delivery of DNA Vaccine Encoding SARS-CoV-2 RBD Using the Determined Protocol. Pharmaceutics 2022; 14:pharmaceutics14112259. [PMID: 36365078 PMCID: PMC9693113 DOI: 10.3390/pharmaceutics14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.
Collapse
|
16
|
Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022; 132:e156211. [PMID: 35289317 PMCID: PMC8920340 DOI: 10.1172/jci156211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Bansal S, Prakash A, Medhi B. New generation vaccine: Novel approaches of vaccine design and delivery and current challenges of vaccine development. Indian J Pharmacol 2022; 54:241-243. [PMID: 36204806 PMCID: PMC9804121 DOI: 10.4103/ijp.ijp_555_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India,Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India,Address for correspondence: Prof. Bikash Medhi, Department of Pharmacology, Room No: 4044, 4th Floor, Research Block B, Postgraduate Institute of Medical Education and Research, Chandigarh, India. E-mail:
| |
Collapse
|
18
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
19
|
Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021; 13:2053. [PMID: 34959335 PMCID: PMC8708541 DOI: 10.3390/pharmaceutics13122053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| |
Collapse
|
20
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
21
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
22
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
23
|
Drug delivery for fighting infectious diseases: a global perspective. Drug Deliv Transl Res 2021; 11:1316-1322. [PMID: 34109534 PMCID: PMC8189707 DOI: 10.1007/s13346-021-01009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
|