1
|
Shan Y, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Zhao F, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Multi-target RNA interference: A disruptive next-generation strategy for precision treatment of rheumatoid arthritis. Int Immunopharmacol 2025; 159:114890. [PMID: 40394795 DOI: 10.1016/j.intimp.2025.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Existing therapeutic regimens, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, exhibit incomplete efficacy and pronounced limitations. RNA interference (RNAi) utilizing small interfering RNA (siRNA) facilitates the precise silencing of key pathological drivers in rheumatoid arthritis (RA), such as tumor necrosis factor-alpha (TNF-α), interleukins IL-1 and IL-6, as well as pivotal inflammatory pathways including NF-κB. This comprehensive systematic review meticulously analyzes 140 studies focusing on therapeutic siRNA for RA. The utilization of siRNA in RA involves the profound inhibition of macrophage and fibroblast-like synoviocyte (FLS) activation through the strategic targeting of TNF, RELA, and MAPK/JAK signaling pathways. In addition, siRNA diminishes inflammatory responses by suppressing critical inflammasome constituents like NLRP3 and fosters the reestablishment of immune equilibrium via downregulation of Th17 differentiation factors and augmentation of regulatory T cell (Treg) functions. It also directly reduces the aggressiveness of FLS by inhibiting pathological signaling components such as CCN1, KHDRBS1 and E2F2. Experimental studies in rodent models have demonstrated that targeted delivery of siRNA via nanoparticles against pathogenic mediators significantly suppresses paw inflammation and mitigates joint destruction. Although challenges such as stability, off-target effects, and efficient delivery remain, advancements in molecular modifications and nanoparticle technology offer promising solutions to these obstacles. In conclusion, unlike the traditional single-target DMARDs or biologics, multi-target RNA interference presents a highly precise mechanism to inhibit intracellular inflammatory cascade and joint damage progression in RA, offering a potential deterrent to disease advancement.
Collapse
Affiliation(s)
- Yu Shan
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bingheng He
- Department of rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Zang C, Mao M, Zhang M, Tang Z, Chen W, Zhu W. Advances in RNA therapy for the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103753. [PMID: 39842534 DOI: 10.1016/j.autrev.2025.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Autoimmune diseases (ADs) are a group of complex, chronic conditions characterized by disturbance of immune tolerance, with examples including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. These diseases have unclear pathogenesis, and traditional therapeutic approaches remain limited. However, advances in high-throughput histology technology and scientific discoveries have led to the identification of various pathogenic factors contributing to ADs. Coupled with improvements in RNA nucleic acid-based drug synthesis, design, and delivery, RNA-based therapies have been extensively investigated for their potential in treating ADs. This paper reviews the progress in the use of miRNAs, lncRNAs, circRNAs, siRNAs, antisense oligonucleotides (ASOs), aptamers, mRNAs, and other RNA-based therapies in ADs, focusing on their therapeutic potential and application prospects, providing insights for future research and clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Chenyang Zang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Manyun Mao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
3
|
Yang L, Sha Y, Wei Y, Yin L, Zhong Z, Meng F. Inflammation-targeted vesicles for co-delivery of methotrexate and TNF-α siRNA to alleviate collagen-induced arthritis. Acta Biomater 2025; 195:338-349. [PMID: 39921182 DOI: 10.1016/j.actbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that has a complex pathogenesis and remains tough to treat. The clinical treatments with e.g. methotrexate (MTX) and TNF-α antibodies show fractional responses and lessen the symptoms only to a certain extent. Here, we developed inflammation-targeted vesicles codelivering methotrexate and TNF-α small interfering RNA (siTNFα) (ITV-MT) for effective ablation of collagen-induced arthritis (CIA) in mice. ITV-MT with tetra-mannose ligand and high loading of MTX (17.1 wt%) and siTNFα (9.0 wt%) displayed a small and uniform size (53 nm) and augmented uptake by inflammatory macrophages leading to superior regulation of macrophage phenotype from M1 to M2 in vitro compared to monotherapies. The intravenous injection of ITV-MT revealed clearly enhanced accretion in the inflamed joints. Interestingly, ITV-MT effectively repolarized M1 macrophages to M2 type, markedly reduced proinflammatory cytokine levels, and significantly attenuated symptoms including joint swelling, arthritis scores and bone damage in the CIA mouse models, by concurrently downregulating both adenosine and TNF-α pathways. This study highlights inflammation-targeted vesicles codelivering methotrexate and TNFα siRNA as a potential strategy to improved RA treatment. STATEMENT OF SIGNIFICANCE: Rheumatoid arthritis (RA) is regarded as an incurable disease, often referred to as an "incurable cancer". Current therapies, such as methotrexate (MTX) and anti-TNFα monoclonal antibodies, exhibit limited efficacy and severe adverse effects. The distinct physiochemical properties of MTX and siTNFα hinder their codelivery to RA joints and inflammatory cells. Here, we engineered inflammation-targeted vesicles (ITV-MT) for the codelivery of MTX and siTNFα to enhance therapeutic outcomes. Our findings reveal that ITV-MT significantly improves the drug uptake by macrophages, facilitating repolarization from M1 to M2 phenotypes. In CIA models, ITV-MT effectively downregulated proinflammatory cytokines while upregulating anti-inflammatory cytokines in RA joints, inhibited inflammatory cell infiltration in the synovium and protected against bone erosion. This study highlights that inflammation-targeted co-delivery of small molecular anti-RA agents and RNAi therapeutics may offer a compelling alternative to existing RA treatments, representing a promising strategy for RA treatment.
Collapse
Affiliation(s)
- Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Zamanian MY, Zafari H, Osminina MK, Skakodub AA, Al‐Aouadi RFA, Golmohammadi M, Nikbakht N, Fatemi I. Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms. Animal Model Exp Med 2025; 8:5-19. [PMID: 39627850 PMCID: PMC11798740 DOI: 10.1002/ame2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 0.46% of the global population. Conventional therapeutics for RA, including disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, frequently result in unintended adverse effects. Dexamethasone (DEX) is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties. Liposomal delivery of DEX, particularly when liposomes are surface-modified with targeting ligands like peptides or sialic acid, can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity. This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA. Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models, reduces joint inflammation and damage, and alleviates cartilage destruction compared to free DEX. The liposomal formulation also shows better hemocompatibility, fewer adverse effects on body weight and immune organ index, and a longer circulation time with higher bioavailability. The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and B-cell-activating factor (BAFF), which are key players in the pathogenesis of RA. Additionally, liposomal DEX can induce the expression of anti-inflammatory cytokines like interleukin-10 (IL-10), which has significant anti-inflammatory and immunoregulatory properties. The findings suggest that liposomal DEX represents a promising candidate for effective and safe RA therapy, with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Hamidreza Zafari
- Department of Orthopedic Surgery, Joint Reconstruction Research Center, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Maria K. Osminina
- Pediatric departmentI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | - Alla A. Skakodub
- Department of Pediatric Preventive Dentistry E.V. BorovskyI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | | | | | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Iman Fatemi
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| |
Collapse
|
5
|
Thangadurai M, Sethuraman S, Subramanian A. Drug Delivery Approaches for Rheumatoid Arthritis: Recent Advances and Clinical Translation Aspects. Crit Rev Ther Drug Carrier Syst 2025; 42:1-54. [PMID: 40084516 DOI: 10.1615/critrevtherdrugcarriersyst.v42.i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized with symmetrical progression of joint deformity that is often diagnosed at a chronic condition with other associated pathological conditions such as pericarditis, keratitis, pulmonary granuloma. Despite the understanding of RA pathophysiology in disease progression, current clinical treatment options such as disease-modifying anti-rheumatic drugs (DMARDs), biologics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) provide only palliative therapy while causing adverse side effects such as off-target multi-organ toxicity and risk of infections. Further, available drug delivery strategies to treat RA pathogenicity does not successfully reach the site of action due to various barriers such as phagocytosis and first pass effect in addition to the disease complexity and unknown etiology, thereby leading to the development of irreversible joint dysfunction. Therefore, novel and effective strategies remain an unmet need to control the disease progression and to maintain the balance between pro- and anti-inflammatory cytokines. This review provides a comprehensive outlook on the RA pathophysiology and its corresponding disease progression. Contributions of synoviocytes such as macrophages, fibroblast-like cells in increasing invasiveness to exacerbate joint damage is also outlined in this review, which could be a potential future therapeutic target to complement the existing treatment regimens in controlling RA pathogenesis. Further, various smart drug delivery approaches under research to achieve maximum therapeutic efficacy with minimal adverse side effects have been discussed, which in turn emphasize the unmet challenges and future perspectives in addressing RA complications.
Collapse
Affiliation(s)
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Laboratory, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
6
|
Zarei K, Jahanbakhshi M, Nahavandi R, Emadi R. Optimized co-delivery of curcumin and methylprednisolone using polyvinyl alcohol-coated CuO nanoparticles for synergistic rheumatoid arthritis treatment. Heliyon 2024; 10:e40429. [PMID: 39641028 PMCID: PMC11617928 DOI: 10.1016/j.heliyon.2024.e40429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The combination of methylprednisolone (MPDL) and curcumin (CUR) for treating rheumatoid arthritis (RA) offers several therapeutic advantages. This synergy allows for a reduction in the dosage of methylprednisolone, minimizing potential side effects associated with long-term steroid use while maintaining or enhancing the treatment's effectiveness. The objective of this study is to prepare drug carriers for MPDL and CUR aimed at treating RA, utilizing Freund's Complete Adjuvant-induced arthritic rat model (AIA). CuO nanoparticles (NPs) were synthesized using ultrasound by reducing copper (II) sulfte pentahydrate with sodium borohydride in a basic solution. Subsequently, these nanoparticles were incrementally added to a polyvinyl alcohol (PVA) solution to ensure controlled integration of PVA-coated CuO NPs. Field Emission Scanning Electron Microscopy (FE-SEM) analysis revealed that the CuO nanoparticles and PVA-coated CuO NPs averaged sizes of 50.7 nm and 104.8 nm, respectively. Furthermore, the PVA-coated CuO NPs demonstrated remarkable biocompatibility, with cell viability ranging from 88.1 % to 92.1 % at concentrations of 0.1 μg/mL and 50 μg/mL after 72 h, as validated through the MTT assay. The PVA-coated CuO NPs exhibited a more controlled and gradual drug release profile for both CUR and MPDL when compared to the PVA matrix. CUR@MPDL@PVA-coated CuO NPs demonstrated the most substantial reduction in hind paw swelling and the minimal clinical scores among all treatment groups, signaling enhanced anti-inflammatory effects. CUR@MPDL@PVA-coated CuO NPs also notably reduced the concentrations of pro-inflammatory cytokines TNF-α and IL-1β when measured against the AIA rats and the groups treated with free agents. Therefore, CUR@MPDL@PVA-coated CuO nanoparticles can be used in biomedical applications due to their size, biocompatibility, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Kimiya Zarei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Nahavandi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophsysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
8
|
Li P, Wang C, Huo H, Xu C, Sun H, Wang X, Wang L, Li L. Prodrug-based nanomedicines for rheumatoid arthritis. DISCOVER NANO 2024; 19:9. [PMID: 38180534 PMCID: PMC10769998 DOI: 10.1186/s11671-023-03950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Most antirheumatic drugs with high toxicity exhibit a narrow therapeutic window due to their nonspecific distribution in the body, leading to undesirable side effects and reduced patient compliance. To in response to these challenges, prodrug-based nanoparticulate drug delivery systems (PNDDS), which combines prodrug strategy and nanotechnology into a single system, resulting their many advantages, including stability for prodrug structure, the higher drug loading capacity of the system, improving the target activity and bioavailability, and reducing their untoward effects. PNDDS have gained attention as a method for relieving arthralgia syndrome of rheumatoid arthritis in recent years. This article systematically reviews prodrug-based nanocarriers for rheumatism treatment, including Nano systems based on prodrug-encapsulated nanomedicines and conjugate-based nanomedicines. It provides a new direction for the clinical treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Pei Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cong Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Hongjie Huo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chunyun Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinyu Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Li Wang
- College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Zheng L, Chen Y, Gu X, Li Y, Zhao H, Shao W, Ma T, Wu C, Wang Q. Co-delivery of drugs by adhesive transdermal patches equipped with dissolving microneedles for the treatment of rheumatoid arthritis. J Control Release 2024; 365:274-285. [PMID: 37979695 DOI: 10.1016/j.jconrel.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In this study, a dosage form consisting of dissolving (D) microneedles (M) and an adhesive (A) transdermal patch (P; DMAP) was designed and pre-clinically evaluated for the treatment of rheumatoid arthritis (RA). The tip of the dissolving microneedles (DMNs) was loaded with the macromolecular drug melittin (Mel@DMNs), this to treat joint inflammation and bone damage, while the adhesive transdermal patches contained the low molecular weight drug diclofenac sodium (DS; DS@AP) for pain relief. Mel@DMNs and DS@AP were ingeniously connected through an isolation layer for compounding Mel-DS@DMAP for the simultaneous delivery of the drugs. In vitro and in vivo experiments showed that DS@AP did not affect the mechanical properties and dissolution process of Mel@DMNs while the pores formed by the microneedles promoted the skin penetration of DS. Treatment of rats suffering from RA with Mel-DS@DMAP reduced paw swelling and damage of the synovium, joint and cartilage, suggesting that the 'patch-microneedle' dosage form might be promising for the treatment and management of RA.
Collapse
Affiliation(s)
- Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yuanzheng Chen
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xun Gu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Hanqing Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wenjun Shao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Chuanbin Wu
- School of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China.
| |
Collapse
|
10
|
Zhang B, Li J, Jiang J, Lin X, Sun X, Wang Q. Overcoming delivery barriers for RNA therapeutics in the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 192:147-160. [PMID: 37844708 DOI: 10.1016/j.ejpb.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
RNA therapeutics can manipulate gene expression or protein production, making them suitable for treating a wide range of diseases. Theoretically, any disease that has a definite biological target would probably find feasible therapeutic approach from RNA-based therapeutics. Numerous clinical trials using RNA therapeutics fighting against cancer, infectious diseases or inherited diseases have been reported and achieved desirable therapeutic efficacy. So far, encouraging findings from various animal experimental studies have also confirmed the great potential of RNA-based therapies in the treatment of rheumatic arthritis (RA). However, the in vivo multiple physiological barriers still seriously compromise the therapeutic efficacy of RNA drugs. Thus, safe and effective delivery strategies for RNA therapeutics are quite essential for their further and wide application in RA therapy. In this review, we will discuss the recent progress achieved using RNA-based therapeutics and focus on delivery strategies that can overcome the in vivo delivery barriers in RA treatment. Furthermore, discussion about the existing problems in current RNA delivery systems for RA therapy has been also included here.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiayu Jiang
- Patent Examination Cooperation Sichuan Center of the Patent office, Chengdu 610213, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Chengdu 610041, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
11
|
Hui H, Miao H, Qiu F, Lin Y, Li H, Zhang Y, Jiang B. Adjunctive dexamethasone palmitate use for intercostal nerve block after video-assisted thoracoscopic surgery: A prospective, randomized control trial. Heliyon 2023; 9:e19156. [PMID: 37662806 PMCID: PMC10474424 DOI: 10.1016/j.heliyon.2023.e19156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives The efficacy of dexamethasone palmitate in extending durations of local anesthetic blocks is uncertain. In a randomized, double-blind study of patients undergoing video-assisted thoracoscopic surgery, we tested whether intravenous or perineural dexamethasone palmitate caused prolonged analgesia after intercostal nerve block. Methods A total of 90 patients subjected to video-assisted thoracoscopic surgery between May and December 2022 were randomly assigned to one of three intercostal nerve blocks study arms (n = 30 each), requiring the addition of 0.5% ropivacaine (23 ml) as follows: controls (C group), 2 ml saline; IV-DXP group, 2 ml saline + 2 ml (8 mg) intravenous dexamethasone palmitate; and PN-DXP group, 2 ml (8 mg) perineural dexamethasone palmitate. Time to first postoperative remedial analgesia served as primary outcome measure. Secondary endpoints included postoperative opioid consumption, pain scores by Visual Analog Scale, analgesia satisfaction, and related adverse effects. Results Compared with controls or the IV-DXP group, time to first postoperative remedial analgesia was longer and postoperative opioid consumption for rescue analgesia was lower in the PN-DXP group (p < 0.01). Similarly, the Visual Analog Scale scores in patients at 8, 12, 18, and 24 h postoperatively were lower in the PN-DXP group than in controls and the IV-DXP group (p < 0.01). Patient satisfaction was statistically lower in the PN-DXP group, compared with either the control or IV-DXP group (p < 0.05). Clinically, the three groups did not differ significantly in occurrences of adverse effects during the 48-h postoperative monitoring period (p > 0.05). Conclusions Perineural dexamethasone palmitate is a promising adjunct to ropivacaine intercostal nerve block by prolonging analgesia with almost no related adverse effects.
Collapse
Affiliation(s)
| | | | | | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Wu D, Si M, Xue HY, Tran NT, Khalili K, Kaminski R, Wong HL. Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir. Nanomedicine (Lond) 2023; 18:1343-1360. [PMID: 37815117 PMCID: PMC10652294 DOI: 10.2217/nnm-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Aim: To develop lipid nano-antiretrovirals (LNAs) for the treatment of HIV-infected macrophages. Materials & methods: LNAs were prepared with docosahexaenoic acid to facilitate brain penetration and surface-decorated with folate considering that infected macrophages often overexpress folate receptors. Results: Folate-decorated LNAs loading rilpivirine (RPV) were efficiently taken up by folate receptor-expressing cell types including activated macrophages. The intracellular Cmax of the RPV-LNAs in activated macrophages was 2.54-fold and the area under the curve was 3.4-fold versus free RPV, translating to comparable or higher (p < 0.01; RPV ≤6.5 ng/ml) activities against HIV infectivity and superior protection (p < 0.05) against HIV cytotoxicity. LNAs were also effective in monocyte-derived macrophages. Conclusion: These findings demonstrate the potential of LNAs for the treatment of infected macrophages, which are key players in HIV reservoirs.
Collapse
Affiliation(s)
- Di Wu
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Mengjie Si
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rafal Kaminski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ho Lun Wong
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
14
|
Kaufmann T, Simon HU. Pharmacological Induction of Granulocyte Cell Death as Therapeutic Strategy. Annu Rev Pharmacol Toxicol 2023; 63:231-247. [PMID: 36028226 DOI: 10.1146/annurev-pharmtox-051921-115130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland; ,
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; , .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
15
|
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, Ali TM, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund's Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants (Basel) 2022; 11:1721. [PMID: 36139795 PMCID: PMC9495550 DOI: 10.3390/antiox11091721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune disease caused by a malfunction of the immune system. The aim of this study was to examine the anti-arthritic effects and suggest the mechanisms of actions of diosmin and trolox in male Wistar rats. Complete Freund's adjuvant (CFA) was used to establish RA in the animals by subcutaneous injection of 100 µL CFA/rat into plantar region of right hind leg in two consecutive days. Diosmin and/or trolox were administered orally at a dosage of 20 mg/kg/day to CFA-induced arthritic rats for 2 weeks. The normal and arthritic control groups were orally given the same equivalent volume of a vehicle (1% carboxymethyl cellulose) in which treatment agents were dissolved. At the end of the experiment, blood samples were collected from the jugular vein for the detection of the total leukocyte count (TLC) and differential leukocyte count (DLC) in blood and the detection of rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), tumor necrosis factor-α (TNF-α), interleukin-13 (IL-13), and interleukin-17 (IL-17) levels by enzyme-linked immunosorbent assay (ELISA), as well as markers of oxidative stress and the antioxidant defense system in serum. The right hind ankle regions of three rats from each group were dissected out and fixed in 10% neutral-buffered formalin for histological examination and the other three were kept at -30 °C for Western blot analysis of nuclear factor-kappa B (NF-κB) protein 50 (NF-κB p50), NF-κB p65, inducible nitric oxide synthase (iNOS), nuclear factor erythroid-2-related factor 2 (Nrf2), and matrix metalloproteinase (MMP)-1 (MMP-1), MMP-3, and MMP-9. The CFA injection was deleterious to the ankle joint's histological architecture, manifesting as infiltration of inflammatory cells into the articular cartilage, hyperplasia of the synovium, and erosion of the cartilage. All these effects were ameliorated by diosmin and/or trolox, with the combined dose being the most effective. The two compounds significantly lowered the elevated serum levels of RF, ACPA, TNF-α, and IL-17, as well as other pro-inflammatory mediators, such as NF-κB p50, NF-κB p65, iNOS, MMP-1, MMP-3 and MMP-9. They also increased the levels of the anti-inflammatory cytokine, IL-13, and the cytoprotective transcription factor Nrf2. The compounds stimulated higher activities of antioxidants, such as glutathione, glutathione-S-transferase, catalase, and superoxide dismutase, and reduced lipid peroxidation in the serum of arthritic rats. In conclusion, diosmin, trolox, and their combination, which was the most potent, exerted anti-arthritic, anti-inflammatory and antioxidant effects by suppressing NF-κB signaling, inhibiting matrix metalloproteinases, and activating Nrf2.
Collapse
Affiliation(s)
- Huda H. Shaaban
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Walaa G. Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Amal K. Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Ayman E. El-Kenawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| |
Collapse
|
16
|
Maisel K. Overcoming transport barrier to immunotherapies. Drug Deliv Transl Res 2021; 11:2271-2272. [PMID: 34674161 DOI: 10.1007/s13346-021-01080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, MD, USA.
| |
Collapse
|