1
|
Yuan H, Liu J, Xu R, Yang K, Qu R, Liu S, Zhang Y, Xiang M. The spatiotemporal heterogeneity of reactive oxygen species in the malignant transformation of viral hepatitis to hepatocellular carcinoma: a new insight. Cell Mol Biol Lett 2025; 30:70. [PMID: 40517270 DOI: 10.1186/s11658-025-00745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
During the transformation of viral hepatitis into hepatocellular carcinoma (HCC), oxidative stress levels increase significantly, leading to tissue damage and chronic inflammation. HCC is characterized by spatiotemporal heterogeneity, which influences oxidative stress patterns, with reactive oxygen species (ROS) as the primary representative molecules. ROS serve not only as critical biomarkers of cancer but also as potential therapeutic targets for HCC, given that their increased levels can either promote or inhibit disease progression. In this review, we systematically examine the temporal heterogeneity of ROS, emphasizing its role in different stages of HCC progression caused by viral hepatitis and in influencing cell fate. We further explore ROS spatial heterogeneity at three levels: cellular, organelle, and biomolecular. Next, we comprehensively review clinical applications and potential therapies designed to selectively modulate ROS on the basis of its spatiotemporal heterogeneity. Finally, we discuss potential future applications of novel therapies that target ROS spatiotemporal heterogeneity to prevent and manage HCC onset and progression. In conclusion, this review enhances understanding of ROS in the progression of viral hepatitis to HCC and offers insights into developing new therapeutic targets and strategies centered on ROS heterogeneity.
Collapse
MESH Headings
- Humans
- Reactive Oxygen Species/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Oxidative Stress
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Animals
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/complications
- Disease Progression
Collapse
Affiliation(s)
- Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Ruochen Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Ruiyang Qu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Shuai Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
2
|
Zhang S, Li M, Zeng J, Zhou S, Yue F, Chen Z, Ma L, Wang Y, Wang F, Luo J. Somatostatin receptor-targeted polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic hepatocellular carcinoma therapy. J Nanobiotechnology 2025; 23:127. [PMID: 39979929 PMCID: PMC11844079 DOI: 10.1186/s12951-025-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
INTRODUCTION The CRISPR/Cas9 system-based gene therapy can fundamentally address the issues of cancer occurrence, development, progression, and metastasis. However, the lack of targeting and effectiveness hinders gene therapy from entering clinical application. Herein, a somatostatin receptor-targeted polymeric nanoplatform is developed for the delivery of a PD-L1-targeted CRISPR/Cas9 system and synergistic treatment of hepatocellular carcinoma. This nanoplatform can effectively incorporate the CRISPR/Cas9 system and the chemotherapeutic drug paclitaxel to simultaneously address the biological safety and packaging capacity issues of viral vectors. After the octreotide-modified polymer (LNA-PEG-OCT) guided the nanoparticle into hepatoma carcinoma cells, the nanoparticle protected the CRISPR/Cas9 ribonucleoprotein complex (RNP) and achieved lysosomal escape. Then, the RNP reached the target gene (PD-L1) under the guidance of the single guide RNA (sgRNA) in the RNP. The PD-L1 gene editing efficiency reached up to 55.8% for HepG2 cells in vitro and 46.0% for tumor tissues in vivo, leading to effective suppression of PD-L1 protein expression. Substantial inhibition of hepatocellular carcinoma cell proliferation and further 79.45% growth repression against subcutaneous xenograft tumors were achieved. Overall, this somatostatin receptor-targeted polymeric nanoplatform system not only provides a promising nanocarrier for CRISPR/Cas9 system delivery, but also expands the potential of combining gene editing and chemotherapy.
Collapse
Affiliation(s)
- Suqin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Meng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jingyi Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Songli Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Feifan Yue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhaoyi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
4
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
5
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
He W, Zhang J, Ju J, Wu Y, Zhang Y, Zhan L, Li C, Wang Y. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv Transl Res 2023; 13:2885-2902. [PMID: 37149557 DOI: 10.1007/s13346-023-01357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.
Collapse
Affiliation(s)
- Wen He
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Tropical Translation Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Gareev K, Tagaeva R, Bobkov D, Yudintceva N, Goncharova D, Combs SE, Ten A, Samochernych K, Shevtsov M. Passing of Nanocarriers across the Histohematic Barriers: Current Approaches for Tumor Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1140. [PMID: 37049234 PMCID: PMC10096980 DOI: 10.3390/nano13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood-tissue barriers), which significantly hampers the transport of nanoparticles from the blood into the tumor tissue. This review focuses on several approaches that facilitate the translocation of nanoparticles across blood-tissue barriers (BTBs) to efficiently accumulate in the tumor. To overcome the challenge of BTBs, several methods have been proposed, including the functionalization of particle surfaces with cell-penetrating peptides (e.g., TAT, SynB1, penetratin, R8, RGD, angiopep-2), which increases the passing of particles across tissue barriers. Another promising strategy could be based either on the application of various chemical agents (e.g., efflux pump inhibitors, disruptors of tight junctions, etc.) or physical methods (e.g., magnetic field, electroporation, photoacoustic cavitation, etc.), which have been shown to further increase the permeability of barriers.
Collapse
Affiliation(s)
- Kamil Gareev
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Ruslana Tagaeva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Danila Bobkov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Daria Goncharova
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Artem Ten
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
8
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|