1
|
Suwannawong N, Thumarat U, Phongphanich P. Association of natural resistance-associated macrophage protein 1 polymorphisms with Salmonella fecal shedding and hematological traits in pigs. Vet World 2022; 15:2738-2743. [PMID: 36590113 PMCID: PMC9798060 DOI: 10.14202/vetworld.2022.2738-2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim Natural resistance-associated macrophage protein 1 encoding gene (Nramp1) plays a role in immune response and disease resistance. This study aimed to investigate the polymorphisms of Nramp1 intron 6 concerning Salmonella shedding and hematological traits in pigs. Materials and Methods A total of 40 commercial pigs (three-way Large White x Landrace x Duroc cross) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and analyze the relationship between the polymorphisms of the Nramp1 gene and Salmonella fecal shedding and hematological parameters. Results Nramp1 was shown to be polymorphic in these pigs. The Nramp1 gene has two alleles (A and B) and two genotypes (AB and BB). The BB genotype had a higher frequency than the AB genotype. A significant relationship between the BB genotype and the number of Salmonella in feces compared to the AB genotype (p < 0.05) on 7 days post-inoculation (DPI) was revealed in the association analysis. The single-nucleotide polymorphism at intron 6 in the Nramp1 gene was linked to white and red blood cells 2 and 7 DPI (p < 0.05). Conclusion The Nramp1 gene was suggested by these findings to be potentially used as a molecular marker for the genetic selection of disease susceptibility in pig breeding.
Collapse
Affiliation(s)
- Nattariga Suwannawong
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90112, Thailand,Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Uschara Thumarat
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Pitchayanipa Phongphanich
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90112, Thailand,Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand,Corresponding author: Pitchayanipa Phongphanich, e-mail: Co-authors: NS: , UT:
| |
Collapse
|
2
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
3
|
Facioli FL, da Silva AN, Dos Santos ED, de Camargo J, Warpechowski MB, da Oliveira Cruz J, Lof LM, Zanella R. From Mendel laws to whole genetic association study to decipher the swine mulefoot phenotype. Res Vet Sci 2021; 143:58-65. [PMID: 34974356 DOI: 10.1016/j.rvsc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
The swine mulefoot (SM) is a rare condition characterized by a non-cloven hoof due to the partial or total fusion of the phalanges. No comprehensive study has been conducted to identify associated markers with this phenotype until now. We aimed to characterize the association between SNP and the mulefoot phenotype using a Genome-Wide Association Study (GWAS). An experimental population was produced using a half-sib mating where the male had the mulefoot phenotype and the females (n = 6) had cloven hoofs. The cross resulted in 27 (47%) animals with the mulefoot characteristic and 30 (53%) normal animals, indicating the possible dominant gene action. Animals were further genotyped using the Illumina PorcineSNP50k BeadChip, and SNPs were tested for associations. Twenty-nine SNPs located on the SSC15, SSC4, and SSCX were associated with the mulefoot phenotype (p-value <5 × 10-5). Six markers were found in the intronic regions of VWC2L, CATIP, PDK3, PCYT1B, and POLA1 genes. The marker rs81277626, on SSC15:116,886,110 bp, is located in the Von Willebrand Factor C Domain (VWC2L), a possible functional candidate gene. The VWC2L is part of a biological process involved with the bone morphogenetic protein (BMP) signaling pathway, previously associated with syndactyly in other species. In conclusion, the identified markers suggest the involvement of the VWC2L gene in the SM phenotype in this population.
Collapse
Affiliation(s)
- Fernanda Luiza Facioli
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Arthur Nery da Silva
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ezequiel Davi Dos Santos
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Janine de Camargo
- Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Marson Bruck Warpechowski
- Departamento de Zootecnia, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Juliano da Oliveira Cruz
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lucas Mallmann Lof
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ricardo Zanella
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Clostridium perfringens beta2 toxin induced in vitro oxidative damage and its toxic assessment in porcine small intestinal epithelial cell lines. Gene 2020; 759:144999. [DOI: 10.1016/j.gene.2020.144999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
5
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Huang X, Sun W, Yan Z, Shi H, Yang Q, Wang P, Li S, Liu L, Zhao S, Gun S. Integrative Analyses of Long Non-coding RNA and mRNA Involved in Piglet Ileum Immune Response to Clostridium perfringens Type C Infection. Front Cell Infect Microbiol 2019; 9:130. [PMID: 31114763 PMCID: PMC6503642 DOI: 10.3389/fcimb.2019.00130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in regulating host immune and inflammatory responses to bacterial infection. Infection with Clostridium perfringens (C. perfringens), a food-borne zoonotic pathogen, can lead to a series of inflammatory diseases in human and piglet, greatly challenging the healthy development of global pig industry. However, the roles of lncRNAs involved in piglet immune response against C. perfringens type C infection remain unknown. In this study, the regulatory functions of ileum lncRNAs and mRNAs were investigated in piglet immune response to C. perfringens type C infection among resistance (IR), susceptibility (IS) and sham-inoculation (control, IC) groups. A total of 480 lncRNAs and 3,669 mRNAs were significantly differentially expressed, the differentially expressed lncRNAs and mRNAs in the IR and IS groups were enriched in various pathways of ABC transporters, olfactory transduction, PPAR signaling pathway, chemokine signaling pathway and Toll-like receptor signaling pathway, involving in regulating piglet immune responses and resistance during infection. There were 212 lncRNAs and 505 target mRNAs found to have important association with C. perfringens infectious diseases, furthermore, 25 dysregulated lncRNAs corresponding to 13 immune-related target mRNAs were identified to play potential roles in defense against bacterial infection. In conclusion, the results improve our understanding on the characteristics of lncRNAs and mRNAs on regulating host immune response against C. perfringens type C infection, which will provide a reference for future research into exploring C. perfringens-related diseases in human.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
7
|
Li P, Wang H, Zhao X, Gou Z, Liu R, Song Y, Li Q, Zheng M, Cui H, Everaert N, Zhao G, Wen J. Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens. Poult Sci 2018; 96:2040-2048. [PMID: 28339850 DOI: 10.3382/ps/pex010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
Salmonella Enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Polymorphisms of the TLR4 gene may affect recognition by Toll-like receptor 4 (TLR4) of bacterial lipopolysaccharide (LPS), leading to differences in host resistance to pathogenic infections. The present study has investigated polymorphic loci of chicken TLR4 (ChTLR4) in ten chicken breeds, electrostatic potentials of mutant structures of TLR4, and a linkage analysis between allelic variation and survival ratio to infection with SE in specific-pathogen-free (SPF) White Leghorns. A total of 19 Single Nucleotide Polymorphisms (SNPs), of which 10 were novel, were found in chicken breeds. Seven newly identified amino acid variants (C68G, G674A, G782A, A896T, T959G, T986A, and A1104C) and previously reported important mutations (G247A, G1028A, C1147T, and A1832G) were demonstrated in the extracellular domain of the ChTLR4 gene. Significant changes in surface electrostatic potential of the ectodomain of TLR4, built by homology modeling, were observed at the Glu83Lys (G247A), Arg298Ser (A896T), Ser368Arg (A1104C), and Gln611Arg (A1832G) substitutions. Linkage analysis showed that one polymorphic locus G247A of TLR4 gene, common in all breeds examined, was significantly associated with increased resistance to SE in SPF White Leghorns chicks (log-rank P-value = 0.04). The genotypes from A1832G SNPs did not show statistically significant survival differences. This study has provided the first direct evidence that G247A substitution in ChTLR4 is associated with increased resistance to Salmonella Enteritidis.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Huihua Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xingwang Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongmei Song
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nadia Everaert
- University of Liège, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Ainslie-Garcia MH, Farzan A, Jafarikia M, Lillie BN. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet Microbiol 2018; 219:171-177. [PMID: 29778193 DOI: 10.1016/j.vetmic.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
Foodborne human salmonellosis is an important food safety concern worldwide. Food-producing animals are one of the major sources of human salmonellosis, and thus control of Salmonella at the farm level could reduce Salmonella spread in the food supply system. Genetic selection of pigs with resistance to Salmonella infection may be one way to control Salmonella on swine farms. The objective of this study was to investigate the association between genetic variants in the porcine innate immune system with on-farm Salmonella shedding and Salmonella colonization tested at slaughter. Fourteen groups of pigs (total 809) were followed from birth to slaughter. Fecal samples collected five times at different stages of production and tissue samples obtained from tonsil and lymph nodes at slaughter were cultured for Salmonella. Genomic DNA was extracted and analyzed for 40 single nucleotide variants and two indels within porcine innate immune genes that were previously associated with Salmonella infection or other infectious diseases. A survey was used to collect information on farm management practices. A multilevel mixed-effects logistic regression modelling method was used to identify SNVs that are associated with Salmonella shedding and/or Salmonella colonization. One single nucleotide variant in the C-type lectin MBL1 and one single nucleotide variant in the cytosolic pattern recognition receptor NOD1 was associated with increased risk of on-farm shedding (p = 0.010) and internal colonization tested at slaughter (p = 0.018), respectively. These findings indicate the potential of these variants for genetic selection programs aimed at controlling Salmonella shedding and colonization in pigs.
Collapse
Affiliation(s)
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Center for Swine Improvement, Inc. 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
9
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
10
|
Clop A, Huisman A, van As P, Sharaf A, Derdak S, Sanchez A. Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genet Sel Evol 2016; 48:28. [PMID: 27036198 PMCID: PMC4818456 DOI: 10.1186/s12711-016-0206-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) are crucial in innate immunity for the recognition of a broad range of microbial pathogens and are expressed in multiple cell types. There are 10 TLR genes described in the pig genome. RESULTS With a twofold objective i.e. to catalogue genetic variants in porcine TLR genes and develop a genotyping array for genetic association studies on immune-related traits, we combined targeted sub-genome enrichment and high-throughput sequencing to sequence the 10 porcine TLR genes in 266 pigs from 10 breeds and wild boars using a DNA-pooling strategy. We identified 306 single nucleotide variants across the 10 TLR and 11 populations, 87 of which were novel. One hundred and forty-seven positions i.e. six stop-gains and 141 non-synonymous substitutions were predicted to alter the protein sequence. Three positions were unique to a single breed with alternative allele frequencies equal to or higher than 0.5. We designed a genotyping array for future applications in genetic association studies, with a selection of 126 variants based on their predicted impact on protein sequence. Since TLR4, TLR7 and TLR9 were underrepresented in this selection, we also included three variants that were located in the 3'UTR of these genes. We tested the array by genotyping 214 of the 266 sequenced pigs. We found that 93 variants that involved the 10 TLR genes were polymorphic in these animals. Twelve of these variants were novel. Furthermore, seven known variants that are associated with immune-related phenotypes are present on the array and can thus be used to test such associations in additional populations. CONCLUSIONS We identified genetic variations that potentially have an impact on the protein sequence of porcine TLR. A genotyping array with 80 non-synonymous, 10 synonymous and three 3'UTR polymorphisms in the 10 TLR genes is now available for association studies in swine populations with measures on immune-related traits.
Collapse
Affiliation(s)
- Alex Clop
- Center for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Catalonia, Spain.
| | - Abe Huisman
- Hypor BV, Villa 'de Körver', Spoorstraat 69, 5831 CK, Boxmeer, The Netherlands
| | - Pieter van As
- Hendrix-Genetics, Villa 'de Körver', Spoorstraat 69, 5831 CK, Boxmeer, The Netherlands
| | | | - Sophia Derdak
- Centre Nacional d'Anàlisi Genòmica CNAG, Baldiri Reixac 4, 08028, Barcelona, Catalonia, Spain
| | - Armand Sanchez
- Center for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Catalonia, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|
11
|
Liu L, Zhao XW, Song YM, Li QH, Li P, Liu RR, Zheng MQ, Wen J, Zhao GP. Difference in resistance to Salmonella enteritidis infection among allelic variants of TLR4 (903, 1832) in SPF chickens. J Appl Genet 2015; 57:389-96. [PMID: 26631064 DOI: 10.1007/s13353-015-0324-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022]
Affiliation(s)
- L Liu
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - X W Zhao
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y M Song
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Q H Li
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - P Li
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - R R Liu
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Q Zheng
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - J Wen
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - G P Zhao
- Key Laboratory of Genetics Resources and Utilization of Livestock, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Zanella R, Gava D, Peixoto JDO, Schaefer R, Ciacci-Zanella JR, Biondo N, da Silva MVGB, Cantão ME, Ledur MC. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus. Virus Res 2015; 210:327-36. [PMID: 26362524 DOI: 10.1016/j.virusres.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
A genome-wide association study for immune response to influenza vaccination in a crossbred swine population was conducted. Swine influenza is caused by influenza A virus (FLUAV) which is considered one of the most prevalent respiratory pathogens in swine worldwide. The main strategy used to control influenza in swine herds is through vaccination. However, the currently circulating FLUAV subtypes in swine are genetically and antigenically diverse and their interaction with the host genetics poses a challenge for the production of efficacious and cross-protective vaccines. In this study, 103 pigs vaccinated with an inactivated H1N1 pandemic virus were genotyped with the Illumina PorcineSNP60V2 BeadChip for the identification of genetic markers associated with immune response efficacy to influenza A virus vaccination. Immune response was measured based on the presence or absence of HA (hemagglutinin) and NP (nucleoprotein) antibodies induced by vaccination and detected in swine sera by the hemagglutination inhibition (HI) and ELISA assays, respectively. The ELISA test was also used as a measurement of antibody levels produced following the FLUAV vaccination. Associations were tested with x(2) test for a case and control data and using maximum likelihood method for the quantitative data, where a moderate association was considered if p<5×10(-5). When testing the association using the HI results, three markers with unknown location and three located on chromosomes SSCX, SSC14 and SSC18 were identified as associated with the immune response. Using the response to vaccination measured by ELISA as a qualitative and quantitative phenotype, four genomic regions were associated with immune response: one on SSC12 and three on chromosomes SSC1, SSC7, and SSC15, respectively. Those regions harbor important functional candidate genes possibly involved with the degree of immune response to vaccination. These results show an important role of host genetics in the immune response to influenza vaccination. Genetic selection for pigs with better response to FLUAV vaccination might be an alternative to reduce the impact of influenza virus infection in the swine industry. However, these results should to be validated in additional populations before its use.
Collapse
Affiliation(s)
- Ricardo Zanella
- Embrapa Swine and Poultry, Concórdia, SC, Brazil; Present Address: University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|