1
|
Cheng M, Gross ML. Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization. Acc Chem Res 2025; 58:165-176. [PMID: 39757421 PMCID: PMC11960338 DOI: 10.1021/acs.accounts.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Protein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation. Building on firsthand experience in developing and applying protein footprinting, we provide an account of our progress in method development and applications.In the development section, we describe fast footprinting with reactive reagents (free radicals, carbenes, carbocations) with emphasis on fast photochemical oxidation of proteins (FPOP). The rates of the modifying reactions are usually faster than protein folding/unfolding, ensuring that the chemistry captures the change without biasing the structural information. We then describe slow, specific side-chain labeling or slow footprinting and hydrogen-deuterium exchange (HDX) to provide context for fast footprinting and to show that, with validation, these modifications can deliver valid structural information. One advantage of slow footprinting is that usually no special apparatus (e.g., laser, synchrotron) is needed. We acknowledge that no single footprint is sufficient, and complementary approaches are needed for structure comparisons.In the second part, we cover several of our footprinting applications for the study of biotherapeutics, metal-bound proteins, aggregating (amyloid) proteins, and integral membrane proteins (IMPs). Solving structural problems in these four areas is often challenging for other high-resolution approaches, motivating the development of protein footprinting as a complementary approach. For example, obtaining structural data for the bound and unbound forms of a protein requires that both forms are amenable for 3D structure determination. For problems of this type, information on changes in structure often provides an answer. For amyloid proteins, structures of the starting state (monomer) and the final fibril state are obtainable by standard methods, but the important structures causing disease appear to be those of soluble oligomers that are beyond high-resolution approaches because the mix of structures is polydisperse in number and size. Moreover, the relevant structures are those that occur in cell or in vivo, not in vitro, ruling out many current methods that are not up to the demands of working in complex milieu. IMPs are another appropriate target because they are unstable in water (in the absence of membranes, detergents) and may not retain their HOS during the long signal averaging needed for standard tools. Furthermore, the structural changes occurring in membrane transport or induced by drug binding or other interactions, for example, resist high resolution determination.We provide here an account on MS-based footprinting, broadly describing its multifaceted development, applications, and challenges based on our first-hand experience in fast and slow footprinting and in HDX. The Account is intended for investigators contemplating the use of these tools. We hope to catalyze refinements in methods and applications through collaborative, cross-disciplinary research that involves organic and analytical chemists, material scientists, and structural biologists.
Collapse
Affiliation(s)
- Ming Cheng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117. Shandong, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Guo C, Cheng M, Li W, Gross ML. Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2700-2710. [PMID: 37967285 PMCID: PMC10924779 DOI: 10.1021/jasms.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Membrane proteins (MPs) play a crucial role in cell signaling, molecular transport, and catalysis and thus are at the heart of designing pharmacological targets. Although structural characterization of MPs at the molecular level is essential to elucidate their biological function, it poses a significant challenge for structural biology. Although mass spectrometry-based protein footprinting may be developed into a powerful approach for studying MPs, the hydrophobic character of membrane regions makes structural characterization difficult using water-soluble footprinting reagents. Herein, we evaluated a small series of MS-based photoactivated iodine reagents with different hydrophobicities. We used tip sonication to facilitate diffusion into micelles, thus enhancing reagent access to the hydrophobic core of MPs. Quantification of the modification extent in hydrophilic extracellular and hydrophobic transmembrane domains provides structurally sensitive information at the residue-level as measured by proteolysis and LC-MS/MS for a model MP, vitamin K epoxide reductase (VKOR). It also reveals a relationship between the reagent hydrophobicity and its preferential labeling sites in the local environment. The outcome should guide the future development of chemical probes for MPs and promote a direction for relatively high-throughput information-rich characterization of MPs in biochemistry and drug discovery.
Collapse
|
3
|
Reid DJ, Dash T, Wang Z, Aspinwall CA, Marty MT. Investigating Daptomycin-Membrane Interactions Using Native MS and Fast Photochemical Oxidation of Peptides in Nanodiscs. Anal Chem 2023; 95:4984-4991. [PMID: 36888920 PMCID: PMC10033427 DOI: 10.1021/acs.analchem.2c05222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Daptomycin is a cyclic lipopeptide antibiotic that targets the lipid membrane of Gram-positive bacteria. Membrane fluidity and charge can affect daptomycin activity, but its mechanisms are poorly understood because it is challenging to study daptomycin interactions within lipid bilayers. Here, we combined native mass spectrometry (MS) and fast photochemical oxidation of peptides (FPOP) to study daptomycin-membrane interactions with different lipid bilayer nanodiscs. Native MS suggests that daptomycin incorporates randomly and does not prefer any specific oligomeric states when integrated into bilayers. FPOP reveals significant protection in most bilayer environments. Combining the native MS and FPOP results, we observed that stronger membrane interactions are formed with more rigid membranes, and pore formation may occur in more fluid membranes to expose daptomycin to FPOP oxidation. Electrophysiology measurements further supported the observation of polydisperse pore complexes from the MS data. Together, these results demonstrate the complementarity of native MS, FPOP, and membrane conductance experiments to shed light on how antibiotic peptides interact with and within lipid membranes.
Collapse
Affiliation(s)
- Deseree J. Reid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Tapasyatanu Dash
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zhihan Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Reid DJ, Rohrbough JG, Kostelic MM, Marty MT. Investigating Antimicrobial Peptide-Membrane Interactions Using Fast Photochemical Oxidation of Peptides in Nanodiscs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:62-67. [PMID: 34866389 PMCID: PMC8732327 DOI: 10.1021/jasms.1c00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial peptides (AMPs) are an important part of the innate immune system and demonstrate promising applications in the fight against antibiotic-resistant infections due to their unique mechanism of targeting bacterial membranes. However, it is challenging to study the interactions of these peptides within lipid bilayers, making it difficult to understand their mechanisms of toxicity and selectivity. Here, we used fast photochemical oxidation of peptides, an irreversible footprinting technique that labels solvent accessible residues, and native charge detection-mass spectrometry to study AMP-lipid interactions with different lipid bilayer nanodiscs. We observed differences in the oxidation of two peptides, indolicidin and LL-37, in three distinct lipid environments, which reveal their affinity for lipid bilayers. Our findings suggest that indolicidin interacts with lipid head groups via a simple charge-driven mechanism, but LL-37 is more specific for Escherichia coli nanodiscs. These results provide complementary information on the potential modes of action and lipid selectivity of AMPs.
Collapse
Affiliation(s)
- Deseree J. Reid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - James G. Rohrbough
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Marius M. Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Pan X, Vachet RW. MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:51-69. [PMID: 33145813 PMCID: PMC8093322 DOI: 10.1002/mas.21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Membrane proteins are incredibly important biomolecules because they mediate interactions between a cell's external and internal environment. Obtaining information about membrane protein structure and interactions is thus important for understanding these essential biomolecules. Compared with the analyses of water-soluble proteins, the structural analysis of membrane proteins is more challenging owing to their unique chemical properties and the presence of lipid components that are necessary to solubilize them. The combination of covalent labeling (CL) and mass spectrometry (MS) has recently been applied with great success to study membrane protein structure and interactions. These studies have demonstrated the many advantages that CL-MS methods have over other traditional biophysical techniques. In this review, we discuss both amino acid-specific and non-specific labeling approaches and the special considerations needed to address the unique challenges associated with interrogating membrane proteins. This review highlights the aspects of this approach that require special care to be applied correctly and provides a comprehensive review of the membrane protein systems that have been studied by CL-MS. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
|
7
|
Guo C, Cheng M, Li W, Gross ML. Diethylpyrocarbonate Footprints a Membrane Protein in Micelles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2636-2643. [PMID: 34664961 PMCID: PMC8903028 DOI: 10.1021/jasms.1c00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Membrane proteins play crucial roles in cell signaling and transport and, thus, are the targets of many small molecule drugs. The characterization of membrane protein structures poses challenges for the high-resolution biophysical tools because the transmembrane (TM) domain is hydrophobic, opening an opportunity for mass spectrometry (MS)-based footprinting. The hydrophobic reagent diethylpyrocarbonate (DEPC), a heavily studied footprinter for water-soluble proteins, can label up to 30% of surface residues via a straightforward protocol, streamlining the MS-based footprinting workflow. To test its applicability to membrane proteins, we footprinted vitamin K epoxide reductase (VKOR) membrane protein with DEPC. The results demonstrate that besides labeling the hydrophilic extracellular (extramembrane (EM)) domain, DEPC can also diffuse into the hydrophobic TM domain and subsequently label that region. The labeling process was facilitated by tip sonication to enhance reagent diffusion into micelles. We then analyzed the correlation between the residue modification extent and the theoretical accessible surface area percentage (%ASA); the data generally show good correlation with the residue location. Compared with conventional hydrophilic footprinters, the relatively hydrophobic DEPC can map a membrane protein's TM domain, suggesting that the reagent's hydrophobicity can be exploited to obtain structural information on the membrane-spanning region. This encouraging result should assist in the development of more efficient footprinters for membrane protein TM domain footprinting, enabled by further understanding the relationship between a reagent's hydrophobicity and its preferred labeling sites.
Collapse
Affiliation(s)
- Chunyang Guo
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ming Cheng
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
9
|
Cheng M, Guo C, Li W, Gross ML. Free‐Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Cheng
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
- Current address: Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - Chunyang Guo
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis MO 63130 USA
| | - Michael L. Gross
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
| |
Collapse
|
10
|
Cheng M, Guo C, Li W, Gross ML. Free-Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angew Chem Int Ed Engl 2021; 60:8867-8873. [PMID: 33751812 PMCID: PMC8083173 DOI: 10.1002/anie.202014096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Indexed: 12/14/2022]
Abstract
A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
- Current address: Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chunyang Guo
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| |
Collapse
|
11
|
Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development. Mol Microbiol 2019; 112:1178-1198. [PMID: 31332863 DOI: 10.1111/mmi.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell-cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O-antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O-antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for priming O-antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O-antigen synthesis, indicating that WbaPMx transfers galactose-1-P to undecaprenyl-phosphate. We also identified WaaLMx (MXAN_2919), as the O-antigen ligase that joins O-antigen to lipid A-core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O-antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O-antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili-dependent motility and required to complete the developmental program leading to the formation of spore-filled fruiting bodies.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jana Jung
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
12
|
Tavares-Carreón F, Ruan X, Ford A, Valvano MA. Sulfhydryl Labeling as a Tool to Investigate the Topology of Membrane Proteins Involved in Lipopolysaccharide Biosynthesis. Methods Mol Biol 2019; 1954:203-213. [PMID: 30864134 DOI: 10.1007/978-1-4939-9154-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Establishing the topology of membrane proteins, especially when their tridimensional structures are unavailable, is critical to identify functional regions, delimit the protein orientation in the membrane, the number of transmembrane segments, and the position of critical amino acids (whether exposed to the solvent or embedded in the lipid bilayer). Elucidating the topology of bacterial integral membrane proteins typically involves the construction of deletion-fusions whereby regions of the protein are fused to reporters. Although these methods have several advantages, they are also artifact prone. In contrast, methods based on single amino acid substitutions preserve the native protein intact. We describe here an assay to analyze the topology of membrane proteins involved in the biogenesis of bacterial glycoconjugates, which is based on the accessibility of cysteine substitutions at various places in the protein under in vivo and in vitro conditions. Cysteine residues are detected with polyethylene glycol-maleimide (PEG-Mal). This procedure can be applied to crude bacterial cell extracts and does not require protein purification.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Xiang Ruan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Amy Ford
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Miguel A Valvano
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK. .,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
13
|
Sharp JS, Misra SK, Persoff JJ, Egan RW, Weinberger SR. Real Time Normalization of Fast Photochemical Oxidation of Proteins Experiments by Inline Adenine Radical Dosimetry. Anal Chem 2018; 90:12625-12630. [PMID: 30290117 PMCID: PMC7811273 DOI: 10.1021/acs.analchem.8b02787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) is a powerful method for measuring protein topography, allowing researchers to monitor events that alter the solvent accessible surface of a protein (e.g., ligand binding, aggregation, conformational changes, etc.) by measuring changes in the apparent rate of reaction of portions of the protein to hydroxyl radicals diffusing in solution. Fast Photochemical Oxidation of Proteins (FPOP) offers an ultrafast benchtop method for radical generation for HRPF, photolyzing hydrogen peroxide using a UV laser to generate high concentrations of hydroxyl radicals that are consumed on roughly a microsecond time scale. The broad reactivity of hydroxyl radicals means that almost anything added to the solution (e.g., ligands, buffers, excipients, etc.) will scavenge hydroxyl radicals, altering their half-life and changing the effective radical concentration experienced by the protein. Similarly, minute changes in peroxide concentration, laser fluence, and buffer composition can alter the effective radical concentration, making reproduction of data challenging. Here, we present a simple method for radical dosimetry that can be carried out as part of the FPOP workflow, allowing for measurement of effective radical concentration in real time. Additionally, by modulating the amount of radical generated, we demonstrate that effective hydroxyl radical yields in FPOP HRPF experiments carried out in buffers with widely differing levels of hydroxyl radical scavenging capacity can be compensated on the fly, yielding statistically indistinguishable results for the same conformer. This method represents a major step in transforming FPOP into a robust and reproducible technology capable of probing protein structure in a wide variety of contexts.
Collapse
Affiliation(s)
- Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
- GenNext Technologies, Inc., Montara, CA 94037
| | - Sandeep K. Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
| | | | | | | |
Collapse
|
14
|
Ruan X, Monjarás Feria J, Hamad M, Valvano MA. Escherichia coli and Pseudomonas aeruginosa lipopolysaccharide O-antigen ligases share similar membrane topology and biochemical properties. Mol Microbiol 2018; 110:95-113. [PMID: 30047569 DOI: 10.1111/mmi.14085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WaaL is an inner membrane glycosyltransferase that catalyzes the transfer of O-antigen polysaccharide from its lipid-linked intermediate to a terminal sugar of the lipid A-core oligosaccharide, a conserved step in lipopolysaccharide biosynthesis. Ligation occurs at the periplasmic side of the bacterial cell membrane, suggesting the catalytic region of WaaL faces the periplasm. Establishing the membrane topology of the WaaL protein family will enable understanding its mechanism and exploit it as a potential antimicrobial target. Applying oxidative labeling of native methionine/cysteine residues, we previously validated a topological model for Escherichia coli WaaL, which differs substantially from the reported topology of the Pseudomonas aeruginosa WaaL, derived from the analysis of truncated protein reporter fusions. Here, we examined the topology of intact E. coli and P. aeruginosa WaaL proteins by labeling engineered cysteine residues with the membrane-impermeable sulfhydryl reagent polyethylene glycol maleimide (PEG-Mal). The accessibility of PEG-Mal to targeted engineered cysteine residues in both E. coli and P. aeruginosa WaaL proteins demonstrates that both ligases share similar membrane topology. Further, we also demonstrate that P. aeruginosa WaaL shares similar functional properties with E. coli WaaL and that E. coli WaaL may adopt a functional dimer conformation.
Collapse
Affiliation(s)
- Xiang Ruan
- Department of Microbiology and Immunology, University of Western Ontario, London, N6A 5C1, Canada
| | - Julia Monjarás Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Mohamad Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, N6A 5C1, Canada.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| |
Collapse
|
15
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
16
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
17
|
Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sharples D, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF. Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry. Anal Chem 2017; 89:8844-8852. [PMID: 28726379 PMCID: PMC5588088 DOI: 10.1021/acs.analchem.7b01310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Cys accessibility and quantitative intact mass spectrometry (MS) analyses have been devised to study the topological transitions of Mhp1, the membrane protein for sodium-linked transport of hydantoins from Microbacterium liquefaciens. Mhp1 has been crystallized in three forms (outward-facing open, outward-facing occluded with substrate bound, and inward-facing open). We show that one natural cysteine residue, Cys327, out of three, has an enhanced solvent accessibility in the inward-facing (relative to the outward-facing) form. Reaction of the purified protein, in detergent, with the thiol-reactive N-ethylmalemide (NEM), results in modification of Cys327, suggesting that Mhp1 adopts predominantly inward-facing conformations. Addition of either sodium ions or the substrate 5-benzyl-l-hydantoin (L-BH) does not shift this conformational equilibrium, but systematic co-addition of the two results in an attenuation of labeling, indicating a shift toward outward-facing conformations that can be interpreted using conventional enzyme kinetic analyses. Such measurements can afford the Km for each ligand as well as the stoichiometry of ion-substrate-coupled conformational changes. Mutations that perturb the substrate binding site either result in the protein being unable to adopt outward-facing conformations or in a global destabilization of structure. The methodology combines covalent labeling, mass spectrometry, and kinetic analyses in a straightforward workflow applicable to a range of systems, enabling the interrogation of changes in a protein's conformation required for function at varied concentrations of substrates, and the consequences of mutations on these conformational transitions.
Collapse
Affiliation(s)
| | | | | | - Oliver Beckstein
- Department of Physics, Arizona State University , Tempe, Arizona 85287-1504, United States
| | - Florian Heinkel
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | - Joerg Gsponer
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Maria Kokkinidou
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | | | | | | |
Collapse
|
18
|
Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 391:54-61. [PMID: 26869850 PMCID: PMC4708066 DOI: 10.1016/j.ijms.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 05/10/2023]
Abstract
Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.
Collapse
Affiliation(s)
- Thomas G. Watkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
19
|
Calabrese AN, Ault JR, Radford SE, Ashcroft AE. Using hydroxyl radical footprinting to explore the free energy landscape of protein folding. Methods 2015; 89:38-44. [PMID: 25746386 PMCID: PMC4651025 DOI: 10.1016/j.ymeth.2015.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 01/26/2023] Open
Abstract
Characterisation of the conformational states adopted during protein folding, including globally unfolded/disordered structures and partially folded intermediate species, is vital to gain fundamental insights into how a protein folds. In this work we employ fast photochemical oxidation of proteins (FPOP) to map the structural changes that occur in the folding of the four-helical bacterial immunity protein, Im7. Oxidative footprinting coupled with mass spectrometry (MS) is used to probe changes in the solvent accessibility of amino acid side-chains concurrent with the folding process, by quantifying the degree of oxidation experienced by the wild-type protein relative to a kinetically trapped, three-helical folding intermediate and an unfolded variant that lacks secondary structure. Analysis of the unfolded variant by FPOP-MS shows oxidative modifications consistent with the species adopting a solution conformation with a high degree of solvent accessibility. The folding intermediate, by contrast, experiences increased levels of oxidation relative to the wild-type, native protein only in regions destabilised by the amino acid substitutions introduced. The results demonstrate the utility of FPOP-MS to characterise protein variants in different conformational states and to provide insights into protein folding mechanisms that are complementary to measurements such as hydrogen/deuterium exchange labelling and Φ-value analysis.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - James R Ault
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Alison E Ashcroft
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Cordeiro RM. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:1786-94. [PMID: 25982446 DOI: 10.1016/j.bbagen.2015.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aquaporins are responsible for water transport across lipid membranes. They are also able to transport reactive oxygen species, playing an important role in redox signaling. Certain plant aquaporins have even the ability to be regulated by oxidative stress. However, the underlying mechanisms are still not fully understood. METHODS Here, molecular dynamics simulations were employed to determine the activation free energies related to the transport of reactive oxygen species through both mammalian and plant aquaporin models. RESULTS AND CONCLUSIONS Both aquaporins may transport hydrogen peroxide (H2O2) and the protonated form of superoxide radicals (HO2). The solution-to-pore transfer free energies were low for small oxy-radicals, suggesting that even highly reactive hydroxyl radicals (HO) might have access to the pore interior and oxidize amino acids responsible for channel selectivity. In the plant aquaporin, no significant change in water permeability was observed upon oxidation of the solvent-exposed disulfide bonds at the extracellular region. During the simulated time scale, the existence of a direct oxidative gating mechanism involving these disulfide bonds could not be demonstrated. GENERAL SIGNIFICANCE Simulation results may improve the understanding of redox signaling mechanisms and help in the interpretation of protein oxidative labeling experiments.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
21
|
Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 2014; 87:1118-26. [PMID: 25495802 PMCID: PMC4636139 DOI: 10.1021/ac5037022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology and ‡School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Rey M, Sarpe V, Burns KM, Buse J, Baker CAH, van Dijk M, Wordeman L, Bonvin AMJJ, Schriemer DC. Mass spec studio for integrative structural biology. Structure 2014; 22:1538-48. [PMID: 25242457 DOI: 10.1016/j.str.2014.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS and tandem MS (MS(2)) data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-MS(2) and data-independent HX-MS(2). The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions.
Collapse
Affiliation(s)
- Martial Rey
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kyle M Burns
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joshua Buse
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Marc van Dijk
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, Utrecht CH 3584, the Netherlands
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, Utrecht CH 3584, the Netherlands
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
23
|
Lee H, Kim H. Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem Biophys Res Commun 2014; 453:268-76. [PMID: 24938127 DOI: 10.1016/j.bbrc.2014.05.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.
Collapse
Affiliation(s)
- Hunsang Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
24
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
26
|
Islam ST, Lam JS. Topological mapping methods for α-helical bacterial membrane proteins--an update and a guide. Microbiologyopen 2013; 2:350-64. [PMID: 23408725 PMCID: PMC3633358 DOI: 10.1002/mbo3.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
Integral membrane proteins with α-helical transmembrane segments (TMS) are known to play important and diverse roles in prokaryotic cell physiology. The net hydrophobicity of TMS directly corresponds to the observed difficulties in expressing and purifying these proteins, let alone producing sufficient yields for structural studies using two-/three-dimensional (2D/3D) crystallographic or nuclear magnetic resonance methods. To gain insight into the function of these integral membrane proteins, topological mapping has become an important tool to identify exposed and membrane-embedded protein domains. This approach has led to the discovery of protein tracts of functional importance and to the proposition of novel mechanistic hypotheses. In this review, we synthesize the various methods available for topological mapping of α-helical integral membrane proteins to provide investigators with a comprehensive reference for choosing techniques suited to their particular topological queries and available resources.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
27
|
Abstract
Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary, and quaternary structures as well as the dynamics that accompany functional cycles and catalysis.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, California 90095, United States.
| |
Collapse
|
28
|
Maltsev AS, Chen J, Levine RL, Bax A. Site-specific interaction between α-synuclein and membranes probed by NMR-observed methionine oxidation rates. J Am Chem Soc 2013; 135:2943-6. [PMID: 23398174 PMCID: PMC3585462 DOI: 10.1021/ja312415q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
α-Synuclein (αS) is an intrinsically disordered
protein
that is water-soluble but also can bind negatively charged lipid membranes
while adopting an α-helical conformation. Membrane affinity
is increased by post-translational N-terminal acetylation, a common
modification in all eukaryotic cells. In the presence of lipid vesicles
containing a small fraction of peroxidized lipids, the N-terminal
Met residues in αS (Met1 and Met5) rapidly oxidize while reducing
the toxic lipid hydroperoxide to a nonreactive lipid hydroxide, whereas
C-terminal Met residues remain unaffected. Met oxidation can be probed
conveniently and quantitatively by NMR spectroscopy. The results show
that oxidation of Met1 reduces the rate of oxidation of Met5 and vice
versa as a result of decreased membrane affinity of the partially
oxidized protein. The effect of Met oxidation on the αS–membrane
affinity extends over large distances, as in the V49M mutant, oxidation
of Met1 and Met5 strongly impacts the oxidation rate of Met49 and
vice versa. When not bound to membrane, oxidized Met1 and Met5 of
αS are excellent substrates for methionine sulfoxide reductase
(Msr), thereby providing an efficient vehicle for water-soluble Msr
enzymes to protect the membrane against oxidative damage.
Collapse
Affiliation(s)
- Alexander S Maltsev
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Abstract
WaaL is a membrane enzyme that catalyzes the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP)-O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). This is a critical step in lipopolysaccharide synthesis. We describe here an assay to perform the ligation reaction in vitro utilizing native substrates.
Collapse
|
30
|
Lin H, Kitova EN, Johnson MA, Eugenio L, Ng KKS, Klassen JS. Electrospray ionization-induced protein unfolding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2122-2131. [PMID: 22993046 DOI: 10.1007/s13361-012-0483-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength (I < 80 mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I > 10 mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.
Collapse
Affiliation(s)
- Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | | | | | |
Collapse
|
31
|
Xu M, Yang L, Wang Q. A Way to Probe the Microenvironment of Free Sulfhydryls in Intact Proteins with a Series of Monofunctional Organic Mercurials. Chemistry 2012; 18:13989-93. [DOI: 10.1002/chem.201200901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 08/08/2012] [Indexed: 11/10/2022]
|