1
|
Zhang YX, Zhang YD, Shi YP. Tracking Spatial Distribution Alterations of Multiple Endogenous Molecules during Lentil Germination by MALDI Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2124-2133. [PMID: 36652673 DOI: 10.1021/acs.jafc.2c07513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the spatial distribution alterations of metabolites during lentil germination is essential to reveal the nutritional value, physiological function, and metabolic pathway in lentils. Hence, an effective matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was established for the first time to visualize the spatial localization changes of 53 metabolites in lentils during germination for 12-72 h. The results of MALDI-MSI analysis showed that phosphatidylinositols, phosphatidylethanolamines, phosphatidylglycerols, and phosphatidic acids were mainly located in the cotyledons of lentils throughout the germination process, while triacylglycerols, phosphatidylcholines, diacylglycerols, amino acids, choline, and spermine spread throughout the lentil tissue at the initial stage of germination and gradually presented obvious distribution characteristics in the radicle with increasing germination time. Heat map analysis was used to visualize the correlations between lipid content changes and germination time, which supported the use of germinated lentils as nutraceutical or functional food.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Petralia LM, van Diepen A, Lokker LA, Nguyen DL, Sartono E, Khatri V, Kalyanasundaram R, Taron CH, Foster JM, Hokke CH. Mass spectrometric and glycan microarray-based characterization of the filarial nematode Brugia malayi glycome reveals anionic and zwitterionic glycan antigens. Mol Cell Proteomics 2022; 21:100201. [PMID: 35065273 PMCID: PMC9046957 DOI: 10.1016/j.mcpro.2022.100201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022] Open
Abstract
Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host–parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF. Antigenic B. malayi N-linked and GSL glycans were structurally defined. IgG/IgM is induced to a subset of B. malayi glycans upon infection of rhesus macaques. Preferential IgG response to B. malayi glycans observed in chronically infected humans. Marked drop of anti-glycan IgG following treatment of individuals with anthelminthic.
Collapse
|
3
|
North SJ, Botchway K, Doonan J, Lumb FE, Dell A, Harnett W, Haslam SM. Site-specific glycoproteomic characterization of ES-62: The major secreted product of the parasitic worm Acanthocheilonema viteae. Glycobiology 2020; 29:562-571. [PMID: 31094418 PMCID: PMC6639541 DOI: 10.1093/glycob/cwz035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of posttranslational decoration by phosphorylcholine (PC). Previously, we showed that ES-62’s PC was attached to N-linked glycans, and using fast atom bombardment mass spectrometry, we characterized the structure of the glycans. However, it was unknown at this time which of ES-62’s four potential N-glycosylation sites carries the PC-modified glycans. In the present study, we now employ more advanced analytical tools—nano-flow liquid chromatography with high-definition electrospray mass spectrometry—to show that PC-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed that up to two PC groups were detected per glycan, and we are now able to characterize N-glycans with up to five PC groups. The number per glycan varies in three of the four glycosylation sites, and in addition, for the first time, we have detected PC on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of PC is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.
Collapse
Affiliation(s)
- Simon J North
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kwamina Botchway
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Anne Dell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
DeBoer J, Wojtkiewicz MS, Haverland N, Li Y, Harwood E, Leshen E, George JW, Ciborowski P, Belshan M. Proteomic profiling of HIV-infected T-cells by SWATH mass spectrometry. Virology 2018; 516:246-257. [PMID: 29425767 DOI: 10.1016/j.virol.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Viral pathogenesis results from changes in host cells due to virus usurpation of the host cell and the innate cellular responses to thwart infection. We measured global changes in protein expression and localization in HIV-1 infected T-cells using subcellular fractionation and the Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) proteomic platform. Eight biological replicates were performed in two independent experimental series. In silico merging of both experiments identified 287 proteins with altered expression (p < .05) between control and infected cells- 172 in the cytoplasm, 84 in the membrane, and 31 in nuclei. 170 of the proteins are components of the NIH HIV interaction database. Multiple Reaction Monitoring and traditional immunoblotting validated the altered expression of several factors during infection. Numerous factors were found to affect HIV infection in gain- and loss-of-expression infection assays, including the intermediate filament vimentin which was found to be required for efficient infection.
Collapse
Affiliation(s)
- Jason DeBoer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Melinda S Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yan Li
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Emma Harwood
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Emily Leshen
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Joseph W George
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
5
|
Sánchez-Ovejero C, Benito-Lopez F, Díez P, Casulli A, Siles-Lucas M, Fuentes M, Manzano-Román R. Sensing parasites: Proteomic and advanced bio-detection alternatives. J Proteomics 2016; 136:145-56. [PMID: 26773860 DOI: 10.1016/j.jprot.2015.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control.
Collapse
Affiliation(s)
- Carlos Sánchez-Ovejero
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Fernando Benito-Lopez
- Analytical Chemistry Department, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Adriano Casulli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, - 00161 Rome, Italy
| | - Mar Siles-Lucas
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Raúl Manzano-Román
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| |
Collapse
|
6
|
Timm T, Grabitzki J, Severcan C, Muratoglu S, Ewald L, Yilmaz Y, Lochnit G. The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures. Parasitol Res 2016; 115:1263-74. [PMID: 26728072 DOI: 10.1007/s00436-015-4863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
In multicellular parasites (e.g., nematodes and protozoa), proteins and glycolipids have been found to be decorated with phosphorylcholine (PC). PC can provoke various effects on immune cells leading to an immunomodulation of the host's immune system. This immunomodulation allows long-term persistence but also prevents severe pathology due to downregulation of cellular immune responses. PC-containing antigens have been found to interfere with key proliferative signaling pathways in B and T cells, development of dendritic cells and macrophages, and mast cell degranulation. These effects contribute to the observed modulated cytokine levels and impairment of lymphocyte proliferation. In contrast to glycosphingolipids, little is known about the PC-epitopes of proteins. So far, only a limited number of PC-modified proteins from nematodes have been identified. In this project, PC-substituted proteins and glycolipids in Ascaris suum have been localized by immunohistochemistry in specific tissues of the body wall, intestine, and reproductive tract. Subsequently, we investigated the PCome of A. suum by 2D gel-based proteomics and detection by Western blotting using the PC-specific antibody TEPC-15. By peptide-mass-fingerprint matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we could identify 59 PC-substituted proteins, which are in involved multiple cellular processes. In addition to membrane proteins like vitellogenin-6, we found proteins with structural (e.g., tubulins) and metabolic (e.g., pyruvate dehydrogenase) functions or which can act in the defense against the host's immune response (e.g., serpins). Initial characterization of the PC-epitopes revealed a predominant linkage of PC to the proteins via N-glycans. Our data form the basis for more detailed investigations of the PC-epitope structures as a prerequisite for comprehensive understanding of the molecular mechanisms of immunomodulation.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Julia Grabitzki
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Cinar Severcan
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Suzan Muratoglu
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Lisa Ewald
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Yavuz Yilmaz
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|