1
|
Tuttle LM, James EI, Georgescauld F, Wales TE, Weis DD, Engen JR, Nath A, Klevit RE, Guttman M. Rigorous Analysis of Multimodal HDX-MS Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:416-423. [PMID: 39837577 PMCID: PMC12034455 DOI: 10.1021/jasms.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations. The algorithms have been incorporated into an updated version of the freely available software, HX-Express, and validated using known mixtures of peptides deuterated to varying degrees. This approach presents a readily accessible tool to fit and interpret bimodal and trimodal behavior in HDX-MS data for mixed populations, EX1 kinetics, and pulse labeling data.
Collapse
Affiliation(s)
- Lisa M. Tuttle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Ellie I. James
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| | | | - Thomas E. Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Abhinav Nath
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Miklos Guttman
- Department of Medicinal Chemistry; University of Washington, Seattle, WA 98195
| |
Collapse
|
2
|
Moroco JA, Jacome ASV, Beltran PMJ, Reiter A, Mundorff C, Guttman M, Morrow J, Coales S, Mayne L, Hamuro Y, Carr SA, Papanastasiou M. High-Throughput Determination of Exchange Rates of Unmodified and PTM-Containing Peptides Using HX-MS. Mol Cell Proteomics 2025; 24:100904. [PMID: 39788320 PMCID: PMC11875167 DOI: 10.1016/j.mcpro.2025.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values. Using fully deuterated controls, we found that for approximately 50% of the peptides, the amino acid sequence and, consequently, the intrinsic exchange rate, are the primary contributors to back exchange. A meta-analysis of the remaining physicochemical properties of peptides revealed multiple features that contribute either positively or negatively to back exchange discrepancies. Employing our workflow for comparable measurements on synthetic peptide mixtures containing post-translational modifications, and their unmodified counterparts, we show that lysine acetylation has a strong effect on the observed exchange rate, whereas serine/threonine phosphorylation does not. Our automated workflow enables high-throughput determination of exchange rates in complex biological peptide mixtures with diverse properties.
Collapse
Affiliation(s)
- Jamie A Moroco
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andrew Reiter
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | - Charlie Mundorff
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jeff Morrow
- Trajan Scientific and Medical, Morrisville, North Carolina, USA
| | - Stephen Coales
- Trajan Scientific and Medical, Morrisville, North Carolina, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Massachusetts, USA
| | - Yoshitomo Hamuro
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Steven A Carr
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
3
|
Shankar S, Liu Y, Tulsian NK, Low BC, Lin Q, Sivaraman J. Insights into the regulation of CHIP E3 ligase-mediated ubiquitination of neuronal protein BNIP-H. PNAS NEXUS 2024; 3:pgae536. [PMID: 39703232 PMCID: PMC11658413 DOI: 10.1093/pnasnexus/pgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
BCL2/adenovirus E1B 19-kDa protein-interacting protein 2 homolog (BNIP-H or Caytaxin), a pivotal adaptor protein that facilitates cerebellar cortex growth and synaptic transmission, is posttranslationally modified to regulate neuronal function. This study reports the ubiquitination of BNIP-H by Carboxyl terminus of Hsc70-Interacting Protein (CHIP), a U-box containing E3 ligase that is also regulated via autoubiquitination. Specifically, it was observed that CHIP autoubiquitinated itself primarily at Lys23 and Lys31 in vitro. Mutation of these residues shows the autoubiquitination of successive lysines of CHIP. In total, nine lysines on CHIP were identified as the autoubiquitination sites, the collective mutation of which almost completely terminated its autoubiquitination. Additionally, CHIP-mediated ubiquitination of BNIP-H is completely inhibited when BNIP-H bears arginine mutations at four key lysine residues. Next, using hydrogen deuterium exchange mass spectrometry, a model of a plausible mechanism was proposed. The model suggests transient N-terminal interactions between the CHIP and BNIP-H which allows for the swinging of U-box domain of CHIP to ubiquitinate BNIP-H. Following complex dissociation, BNIP-H population is regulated via the ubiquitin-proteasome pathway. Collectively, these results aid in our understanding of CHIP-mediated BNIP-H ubiquitination and provide further insight into the roles of these proteins in neuritogenesis and neurotransmission.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Yaochen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nikhil Kumar Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Boon C Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- NUS College, National University of Singapore, Singapore 138593
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
4
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024; 124:12242-12263. [PMID: 39481095 PMCID: PMC11565574 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| | - Antonio Grimaldi
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Jochem H. Smit
- Department
of Microbiology and Immunology, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, KU
Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology
and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| |
Collapse
|
5
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
7
|
Damont A, Legrand A, Cao C, Fenaille F, Tabet JC. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. MASS SPECTROMETRY REVIEWS 2023; 42:1300-1331. [PMID: 34859466 DOI: 10.1002/mas.21765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Collapse
Affiliation(s)
- Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Anaïs Legrand
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Chenqin Cao
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Hammerschmid D, Calvaresi V, Bailey C, Russell Lewis B, Politis A, Morris M, Denbigh L, Anderson M, Reading E. Chromatographic Phospholipid Trapping for Automated H/D Exchange Mass Spectrometry of Membrane Protein-Lipid Assemblies. Anal Chem 2023; 95:3002-3011. [PMID: 36706021 PMCID: PMC9909672 DOI: 10.1021/acs.analchem.2c04876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipid interactions modulate the function, folding, structure, and organization of membrane proteins. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a useful tool to understand the structural dynamics of these proteins within lipid environments. Lipids, however, have proven problematic for HDX-MS analysis of membrane-embedded proteins due to their presence of impairing proteolytic digestion, causing liquid chromatography column fouling, ion suppression, and/or mass spectral overlap. Herein, we describe the integration of a chromatographic phospholipid trap column into the HDX-MS apparatus to enable online sample delipidation prior to protease digestion of deuterium-labeled protein-lipid assemblies. We demonstrate the utility of this method on membrane scaffold protein-lipid nanodisc─both empty and loaded with the ∼115 kDa transmembrane protein AcrB─proving efficient and automated phospholipid capture with minimal D-to-H back-exchange, peptide carry-over, and protein loss. Our results provide insights into the efficiency of phospholipid capture by ZrO2-coated and TiO2 beads and describe how solution conditions can be optimized to maximize not only the performance of our online but also the existing offline, delipidation workflows for HDX-MS. We envision that this HDX-MS method will significantly ease membrane protein analysis, allowing to better interrogate their dynamics in artificial lipid bilayers or even native cell membranes.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Valeria Calvaresi
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Chloe Bailey
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | | | - Argyris Politis
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Laetitia Denbigh
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, SK9
4AX Wilmslow, U.K.
| | - Eamonn Reading
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U.K.
| |
Collapse
|
10
|
Miller PG, Sathappa M, Moroco JA, Jiang W, Qian Y, Iqbal S, Guo Q, Giacomelli AO, Shaw S, Vernier C, Bajrami B, Yang X, Raffier C, Sperling AS, Gibson CJ, Kahn J, Jin C, Ranaghan M, Caliman A, Brousseau M, Fischer ES, Lintner R, Piccioni F, Campbell AJ, Root DE, Garvie CW, Ebert BL. Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun 2022; 13:3778. [PMID: 35773251 PMCID: PMC9246869 DOI: 10.1038/s41467-022-30463-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/02/2022] [Indexed: 02/02/2023] Open
Abstract
PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.
Collapse
Affiliation(s)
- Peter G Miller
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Wei Jiang
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Yue Qian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Qi Guo
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Andrew O Giacomelli
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Subrata Shaw
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Camille Vernier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Besnik Bajrami
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam S Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Gibson
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Josephine Kahn
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthew Ranaghan
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alisha Caliman
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Merissa Brousseau
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert Lintner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | | | - David E Root
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
12
|
Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA, Hodge EA, Zwick MB, Lee KK. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 2022; 185:641-653.e17. [PMID: 35123651 PMCID: PMC9000915 DOI: 10.1016/j.cell.2022.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus N Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob T Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods Enzymol 2022; 673:475-516. [PMID: 35965017 DOI: 10.1016/bs.mie.2022.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.
Collapse
|
14
|
Fiorentino F, Bolla JR. Mass Spectrometry Analysis of Dynamics and Interactions of the LPS Translocon LptDE. Methods Mol Biol 2022; 2548:109-128. [PMID: 36151495 DOI: 10.1007/978-1-0716-2581-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) is essential for Gram-negative bacteria OM barrier function and for maintaining its cell integrity. As such, comprehensive information about its biosynthesis and translocation represents a successful strategy for the development of antibacterial drugs. LPS is a complex glycolipid, and probing its interactions with LPS transport (Lpt) proteins has been extremely challenging. However, mass spectrometry (MS) techniques have recently catalyzed tremendous advancements in the characterization of LPS transport (Lpt) proteins and probed associated conformational dynamics upon substrate binding. Here, we describe the application of MS methods to study the dynamics of LPS translocon LptDE in the presence of natural substrates and inhibitors.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Jani R Bolla
- The Kavli Institute for Nanoscience Discovery, Oxford, UK.
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Brier S, Rasetti-Escargueil C, Wijkhuisen A, Simon S, Marechal M, Lemichez E, Popoff MR. Characterization of a highly neutralizing single monoclonal antibody to botulinum neurotoxin type A. FASEB J 2021; 35:e21540. [PMID: 33817838 DOI: 10.1096/fj.202002492r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/15/2023]
Abstract
Compared to conventional antisera strategies, monoclonal antibodies (mAbs) represent an alternative and safer way to treat botulism, a fatal flaccid paralysis due to botulinum neurotoxins (BoNTs). In addition, mAbs offer the advantage to be produced in a reproducible manner. We previously identified a unique and potent mouse mAb (TA12) targeting BoNT/A1 with high affinity and neutralizing activity. In this study, we characterized the molecular basis of TA12 neutralization by combining Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) with site-directed mutagenesis and functional studies. We found that TA12 recognizes a conformational epitope located at the interface between the HCN and HCC subdomains of the BoNT/A1 receptor-binding domain (HC ). The TA12-binding interface shares common structural features with the ciA-C2 VHH epitope and lies on the face opposite recognized by ciA-C2- and the CR1/CR2-neutralizing mAbs. The single substitution of N1006 was sufficient to affect TA12 binding to HC confirming the position of the epitope. We further uncovered that the TA12 epitope overlaps with the BoNT/A1-binding site for both the neuronal cell surface receptor synaptic vesicle glycoprotein 2 isoform C (SV2C) and the GT1b ganglioside. Hence, TA12 potently blocks the entry of BoNT/A1 into neurons by interfering simultaneously with the binding of SV2C and to a lower extent GT1b. Our study reveals the unique neutralization mechanism of TA12 and emphasizes on the potential of using single mAbs for the treatment of botulism type A.
Collapse
Affiliation(s)
- Sébastien Brier
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR3528, Paris, France
| | | | - Anne Wijkhuisen
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Maud Marechal
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| |
Collapse
|
17
|
Vlčková HK, Catapano MC, Mitašík L, Kotland O, Nejmanová I, Pourová J, Mladěnka P, Nováková L. Featuring ultimate sensitivity of high-resolution LC-MS analysis of phenolics in rat plasma. J Sep Sci 2021; 44:1893-1903. [PMID: 33650236 DOI: 10.1002/jssc.202100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Sensitive analysis of very low-molecular weight metabolites using liquid chromatography with quadrupole-time-of-flight mass spectrometry is challenging due to the high losses of ions in a time-of-flight analyzer. Improvement in sensitivity for these analytes via the optimization of advanced parameters, including quadrupole profile, ion guide parameters, and duty cycle, has been achieved. The optimization of the method was carried out using a large spectrum of structurally different compounds including (iso)flavonoids and their known metabolites. These compounds can be categorized into two major groups, that is, compounds with (iso)flavonoid core and low-molecular weight phenolics. The optimization of the duty cycle enabled up to a 15-fold increase in analyte responses while the contribution of tuning ion optics and quadrupole profile was negligible. The limits of quantifications of our new method were assessed using both standard solutions and rat plasma. They were decreased at least 10 times for several low-molecular weight phenolics enabling measurement of their concentrations in a range of 1-50 ng/mL in rat plasma after protein precipitation. Concurrently, the limits of quantifications for compounds with (iso)flavonoid core did not increase distinctly allowing their detection in a range of 0.5-10 ng/mL. The new method was used for the targeting of phenolics in biological samples from pharmacokinetics experiments.
Collapse
Affiliation(s)
- Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucia Mitašík
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | - Iveta Nejmanová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
18
|
Filandrova R, Kavan D, Kadek A, Novak P, Man P. Studying Protein-DNA Interactions by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2021; 2247:193-219. [PMID: 33301119 DOI: 10.1007/978-1-0716-1126-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein-DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.
Collapse
Affiliation(s)
- Ruzena Filandrova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alan Kadek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Petr Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Clouser AF, Alam YH, Atkins WM. Cholesterol Asymmetrically Modulates the Conformational Ensemble of the Nucleotide-Binding Domains of P-Glycoprotein in Lipid Nanodiscs. Biochemistry 2020; 60:85-94. [PMID: 33350827 DOI: 10.1021/acs.biochem.0c00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates its activity. An understanding of structural or dynamic changes due to the lipid environment is lacking. We aimed to determine the effects of cholesterol in a membrane on the conformational behavior of P-gp in lipid nanodiscs. The presence of cholesterol stimulates ATP hydrolysis and alters lipid order and fluidity. Hydrogen/deuterium exchange mass spectrometry demonstrates that cholesterol in the membrane induces asymmetric, long-range changes in the distributions and exchange kinetics of conformations of the nucleotide-binding domains, correlating the effects of lipid composition on activity with specific changes in the P-gp conformational landscape.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - Yasmine H Alam
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States.,Department of Biological Sciences, MARC Program, California State University, Fullerton, California 92834-6850, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
20
|
Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nat Chem Biol 2020; 17:187-195. [PMID: 33199913 DOI: 10.1038/s41589-020-00694-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD β-taco domain, coupled with conformational changes on β-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the β-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the β-barrel and β-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.
Collapse
|
21
|
Benhaim MA, Mangala Prasad V, Garcia NK, Guttman M, Lee KK. Structural monitoring of a transient intermediate in the hemagglutinin fusion machinery on influenza virions. SCIENCE ADVANCES 2020; 6:eaaz8822. [PMID: 32494683 PMCID: PMC7190341 DOI: 10.1126/sciadv.aaz8822] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/05/2020] [Indexed: 05/16/2023]
Abstract
The influenza virus hemagglutinin (HA) fusion protein has long been viewed as a "spring-loaded" fusion machine whereby activation at low pH initiates a rapid and irreversible cascade of conformational changes that drives the membrane fusion reaction. This mechanism has shaped our understanding of how type 1 viral fusion proteins function as a whole. Experimental limitations have hindered efforts to expand our mechanistic and structural understanding of viral membrane fusion. Here, we used pulse-labeling hydrogen/deuterium exchange mass spectrometry and cryo-electron tomography to monitor and characterize the structural dynamics of HA during fusion activation on intact virions. Our data reveal how concurrent reorganizations at the HA1 receptor binding domain interface and HA2 fusion subunit produce a dynamic fusion intermediate ensemble in full-length HA. The soluble HA ectodomain transitions directly to the postfusion state with no observable intermediate.
Collapse
Affiliation(s)
- M. A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - V. Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - N. K. Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - M. Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - K. K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Corresponding author.
| |
Collapse
|
22
|
Singh AK, Balchin D, Imamoglu R, Hayer-Hartl M, Hartl FU. Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF. J Mol Biol 2020; 432:2304-2318. [PMID: 32135190 DOI: 10.1016/j.jmb.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (β/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| |
Collapse
|
23
|
Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol 2020; 3:28. [PMID: 31942029 PMCID: PMC6962161 DOI: 10.1038/s42003-019-0749-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.
Collapse
|
24
|
O'Brien DP, Hourdel V, Chenal A, Brier S. Hydrogen/Deuterium Exchange Mass Spectrometry for the Structural Analysis of Detergent-Solubilized Membrane Proteins. Methods Mol Biol 2020; 2127:339-358. [PMID: 32112332 DOI: 10.1007/978-1-0716-0373-4_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins are involved in numerous biological functions and represent important drug targets. Despite their abundance in the human proteome, the number of integral membrane protein structures is largely underrepresented in the Protein Data Bank. The challenges associated with the biophysical characterization of such biological systems are well known. Most structural approaches, including X-ray crystallography, SAXS, or mass spectrometry (MS), require the complete solubilization of membrane proteins in aqueous solutions. Detergents are frequently used for this task, but may interfere with the analysis, as is the case with MS. The use of "MS-friendly" detergents, such as non-ionic alkyl glycoside detergents, has greatly facilitated the analysis of detergent-solubilized membrane proteins. Here, we describe a protocol, which we have successfully implemented in our laboratory to study the structure and dynamics of detergent-solubilized integral membrane proteins by Hydrogen/Deuterium eXchange and Mass Spectrometry (HDX-MS). The procedure does not require detergent removal prior to MS analysis, instead taking advantage of the ultra-high pressure chromatographic system to separate deuterated peptides from "MS-friendly" detergents.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Biochemistry of Macromolecular Interaction Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Véronique Hourdel
- Environment and Infectious Risks Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interaction Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Sébastien Brier
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
25
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
26
|
Papanastasiou M, Mullahoo J, DeRuff KC, Bajrami B, Karageorgos I, Johnston SE, Peckner R, Myers SA, Carr SA, Jaffe JD. Chasing Tails: Cathepsin-L Improves Structural Analysis of Histones by HX-MS. Mol Cell Proteomics 2019; 18:2089-2098. [PMID: 31409669 PMCID: PMC6773551 DOI: 10.1074/mcp.ra119.001325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Karageorgos
- Biomolecular Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD;; Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Ryan Peckner
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
27
|
Clouser AF, Baughman HER, Basanta B, Guttman M, Nath A, Klevit RE. Interplay of disordered and ordered regions of a human small heat shock protein yields an ensemble of 'quasi-ordered' states. eLife 2019; 8:e50259. [PMID: 31573509 PMCID: PMC6791718 DOI: 10.7554/elife.50259] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are nature's 'first responders' to cellular stress, interacting with affected proteins to prevent their aggregation. Little is known about sHSP structure beyond its structured α-crystallin domain (ACD), which is flanked by disordered regions. In the human sHSP HSPB1, the disordered N-terminal region (NTR) represents nearly 50% of the sequence. Here, we present a hybrid approach involving NMR, hydrogen-deuterium exchange mass spectrometry, and modeling to provide the first residue-level characterization of the NTR. The results support a model in which multiple grooves on the ACD interact with specific NTR regions, creating an ensemble of 'quasi-ordered' NTR states that can give rise to the known heterogeneity and plasticity of HSPB1. Phosphorylation-dependent interactions inform a mechanism by which HSPB1 is activated under stress conditions. Additionally, we examine the effects of disease-associated NTR mutations on HSPB1 structure and dynamics, leveraging our emerging structural insights.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Hannah ER Baughman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
- Department of Medicinal ChemistryUniversity of WashingtonSeattleUnited States
| | - Benjamin Basanta
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Miklos Guttman
- Department of Medicinal ChemistryUniversity of WashingtonSeattleUnited States
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleUnited States
| | - Rachel E Klevit
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
28
|
Chaperone Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. Mol Cell 2019; 74:88-100.e9. [DOI: 10.1016/j.molcel.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022]
|
29
|
Kim HJ, Liyanage OT, Mulenos MR, Gallagher ES. Mass Spectral Detection of Forward- and Reverse-Hydrogen/Deuterium Exchange Resulting from Residual Solvent Vapors in Electrospray Sources. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2030-2040. [PMID: 29998361 DOI: 10.1007/s13361-018-2019-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 05/22/2023]
Abstract
Characterizing glycans is analytically challenging since glycans are heterogeneous, branched polymers with different three-dimensional conformations. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been used to analyze native conformations and dynamics of biomolecules by measuring the mass increase of analytes as labile protons are replaced with deuterium following exposure to deuterated solvents. The rate of exchange is dependent on the chemical functional group, the presence of hydrogen bonds, pH, temperature, charge, and solvent accessibility. HDX-MS of carbohydrates is challenging due to the rapid exchange rate of hydroxyls. Here, we describe an observed HDX reaction associated with residual solvent vapors saturating electrospray sources. When undeuterated melezitose was infused after infusing D2O, samples with up to 73% deuterium exchange were detected. This residual solvent HDX was observed for both carbohydrates and peptides in multiple instruments and dependent on sample infusion rate, infusion time, and deuterium content of the solvent. This residual solvent HDX was observed over several minutes of sample analysis and persisted long enough to alter the measured deuterium labeling and possibly change the interpretation of the results. This work illustrates that residual solvent HDX competes with in-solution HDX for rapidly exchanging functional groups. Thus, we propose conditions to minimize this effect, specifically for top-down, in-electrospray ionization, and quench-flow HDX experiments. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- H Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - O Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Marina R Mulenos
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
30
|
Gatsogiannis C, Merino F, Roderer D, Balchin D, Schubert E, Kuhlee A, Hayer-Hartl M, Raunser S. Tc toxin activation requires unfolding and refolding of a β-propeller. Nature 2018; 563:209-213. [DOI: 10.1038/s41586-018-0556-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
31
|
Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC. Cell 2018; 174:1507-1521.e16. [PMID: 30100183 DOI: 10.1016/j.cell.2018.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.
Collapse
|
32
|
Bhat JY, Miličić G, Thieulin-Pardo G, Bracher A, Maxwell A, Ciniawsky S, Mueller-Cajar O, Engen JR, Hartl FU, Wendler P, Hayer-Hartl M. Mechanism of Enzyme Repair by the AAA + Chaperone Rubisco Activase. Mol Cell 2017; 67:744-756.e6. [PMID: 28803776 DOI: 10.1016/j.molcel.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/16/2023]
Abstract
How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.
Collapse
Affiliation(s)
- Javaid Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Goran Miličić
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gabriel Thieulin-Pardo
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrew Maxwell
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Susanne Ciniawsky
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Wendler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
33
|
Abstract
Recent research shows surging interest to visualize human G protein-coupled receptor (GPCR) dynamic structures using the bottom-up H/D-exchange (HDX) proteomics technology. This opinion article clarifies critical technical nuances and logical thinking behind the GPCR HDX proteomics method, to help scientists overcome cross-discipline pitfalls, and understand and reproduce the protocol at high quality. The 2010 89% HDX structural coverage of GPCR was achieved with both structural and analytical rigor. This article emphasizes systematically considering membrane protein structure stability and compatibility with chromatography and mass spectrometry (MS) throughout the pipeline, including the effects of metal ions, zero-detergent shock, and freeze-thaws on HDX result rigor. This article proposes to view bottom-up HDX as two steps to guide choices of detergent buffers and chromatography settings: (I) protein HDX labeling in native buffers, and (II) peptide-centric analysis of HDX labels, which applies (a) bottom-up MS/MS to construct peptide matrix and (b) HDX MS to locate and quantify H/D labels. The detergent-low-TCEP digestion method demystified the challenge of HDX-grade GPCR digestion. GPCR HDX proteomics is a structural approach, thus its choice of experimental conditions should let structure lead and digestion follow, not the opposite.
Collapse
Affiliation(s)
- Xi Zhang
- Independent Researcher, Montreal, QC, H2Y 1H3, Canada
| |
Collapse
|
34
|
Jensen PF, Comamala G, Trelle MB, Madsen JB, Jørgensen TJD, Rand KD. Removal of N-Linked Glycosylations at Acidic pH by PNGase A Facilitates Hydrogen/Deuterium Exchange Mass Spectrometry Analysis of N-Linked Glycoproteins. Anal Chem 2016; 88:12479-12488. [DOI: 10.1021/acs.analchem.6b03951] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pernille Foged Jensen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Gerard Comamala
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Morten Beck Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jeppe Buur Madsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Kasper. D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Loos G, Van Schepdael A, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150366. [PMID: 27644982 PMCID: PMC5031633 DOI: 10.1098/rsta.2015.0366] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 05/04/2023]
Abstract
Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Glenn Loos
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. J Virol 2016; 90:9224-36. [PMID: 27489265 DOI: 10.1128/jvi.01116-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. IMPORTANCE The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key functional roles. In this study, we examine the conserved, CD4 binding site-proximal N197 glycan and demonstrate that its removal both facilitates neutralizing antibody access to the CD4 binding site and modestly impacts the structural dynamics at the trimer crown without drastically altering global Env trimer stability. This indicates that surgical glycosylation site modification may be an effective way of sculpting epitope presentation in Env-based vaccines.
Collapse
|