1
|
Lee J, Im D, Liu Y, Fang J, Tian X, Kim M, Zhang WB, Seo J. Distinguishing Protein Chemical Topologies Using Supercharging Ion Mobility Spectrometry-Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202314980. [PMID: 37937859 DOI: 10.1002/anie.202314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM ) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Dahye Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| |
Collapse
|
2
|
Fernandez-Medina T, Vaquette C, Gomez-Cerezo MN, Ivanovski S. Characterization of the Protein Corona of Three Chairside Hemoderivatives on Melt Electrowritten Polycaprolactone Scaffolds. Int J Mol Sci 2023; 24:ijms24076162. [PMID: 37047135 PMCID: PMC10094244 DOI: 10.3390/ijms24076162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
In tissue engineering, the relationship between a biomaterial surface and the host's immune response during wound healing is crucial for tissue regeneration. Despite hemoderivative functionalization of biomaterials becoming a common tissue-engineering strategy for enhanced regeneration, the characteristics of the protein-biomaterial interface have not been fully elucidated. This study characterized the interface formed by the adsorbed proteins from various hemoderivatives with pristine and calcium phosphate (CaP)-coated polycaprolactone (PCL) melt electrowritten scaffolds. PCL scaffolds were fabricated by using melt electrospinning writing (MEW). Three hemoderivatives (pure platelet-rich plasma (P-PRP), leucocyte platelet-rich plasma (L-PRP) and injectable platelet-rich fibrin (i-PRF)) and total blood PLASMA (control) were prepared from ovine blood. Hemoderivatives were characterized via SEM/EDX, cross-linking assay, weight loss, pH and protein quantification. The interface between PCL/CaP and hemoderivative was examined via FTIR, XPS and electrophoresis. i-PRF/PCL-CaP (1653 cm-1), PLASMA/PCL-CaP (1652 cm-1) and i-PRF/PCL (1651 cm-1) demonstrated a strong signal at the Amide I region. PLASMA and i-PRF presented similar N1s spectra, with most of the nitrogen involved in N-C=O bonds (≈400 eV). i-PRF resulted in higher adsorption of low molecular weight (LMW) proteins at 60 min, while PLASMA exhibited the lowest adsorption. L-PRP and P-PRP had a similar pattern of protein adsorption. The characteristics of biomaterial interfaces can be customized, thus creating a specific hemoderivative-defined layer on the PCL surface. i-PRF demonstrated a predominant adsorption of LMW proteins. Further investigation of hemoderivative functionalized biomaterials is required to identify the differential protein corona composition, and the resultant immune response and regenerative capacity.
Collapse
Affiliation(s)
- T Fernandez-Medina
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- College of Medicine and Dentistry, James Cook University, Cairns Campus, Cairns 4870, Australia
| | - C Vaquette
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - M N Gomez-Cerezo
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - S Ivanovski
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| |
Collapse
|
3
|
Lettow M, Greis K, Grabarics M, Horlebein J, Miller RL, Meijer G, von Helden G, Pagel K. Chondroitin Sulfate Disaccharides in the Gas Phase: Differentiation and Conformational Constraints. J Phys Chem A 2021; 125:4373-4379. [PMID: 33979516 PMCID: PMC8279649 DOI: 10.1021/acs.jpca.1c02463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Glycosaminoglycans
(GAGs) are a family of complex carbohydrates
vital to all mammalian organisms and involved in numerous biological
processes. Chondroitin and dermatan sulfate, an important class of
GAGs, are linear macromolecules consisting of disaccharide building
blocks of N-acetylgalactosamine and two different
uronic acids. The varying degree and the site of sulfation render
their characterization challenging. Here, we combine mass spectrometry
with cryogenic infrared spectroscopy in the wavenumber range from
1000 to 1800 cm–1. Fingerprint spectra were recorded
for a comprehensive set of disaccharides bearing all known motifs
of sulfation. In addition, state-of-the-art quantum chemical calculations
were performed to aid the understanding of the differences in the
experimental fingerprint spectra. The results show that the degree
and position of charged sulfate groups define the size of the conformational
landscape in the gas phase. The detailed understanding of cryogenic
infrared spectroscopy for acidic and often highly sulfated glycans
may pave the way to utilize the technique in fragment-based sequencing
approaches.
Collapse
Affiliation(s)
- Maike Lettow
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Kim Greis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Márkó Grabarics
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jan Horlebein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
4
|
Lieblein T, Zangl R, Martin J, Hoffmann J, Hutchison MJ, Stark T, Stirnal E, Schrader T, Schwalbe H, Morgner N. Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer's disease related oligomers. eLife 2020; 9:59306. [PMID: 33095161 PMCID: PMC7682991 DOI: 10.7554/elife.59306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular, we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here, we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers.
Collapse
Affiliation(s)
- Tobias Lieblein
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Rene Zangl
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Janosch Martin
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Jan Hoffmann
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Marie J Hutchison
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Tina Stark
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Elke Stirnal
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Thomas Schrader
- University of Duisburg-Essen, Institute of Organic Chemistry, Essen, Germany
| | - Harald Schwalbe
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Nina Morgner
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| |
Collapse
|
5
|
Urner LH, Schulze M, Maier YB, Hoffmann W, Warnke S, Liko I, Folmert K, Manz C, Robinson CV, Haag R, Pagel K. A new azobenzene-based design strategy for detergents in membrane protein research. Chem Sci 2020; 11:3538-3546. [PMID: 34109026 PMCID: PMC8152689 DOI: 10.1039/d0sc01022g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/02/2022] Open
Abstract
Mass spectrometry enables the in-depth structural elucidation of membrane protein complexes, which is of great interest in structural biology and drug discovery. Recent breakthroughs in this field revealed the need for design rules that allow fine-tuning the properties of detergents in solution and gas phase. Desirable features include protein charge reduction, because it helps to preserve native features of protein complexes during transfer from solution into the vacuum of a mass spectrometer. Addressing this challenge, we here present the first systematic gas-phase study of azobenzene detergents. The utility of gas-phase techniques for monitoring light-driven changes of isomer ratios and molecular properties are investigated in detail. This leads to the first azobenzene detergent that enables the native mass spectrometry analysis of membrane proteins and whose charge-reducing properties can be tuned by irradiation with light. More broadly, the presented work outlines new avenues for the high-throughput characterization of supramolecular systems and opens a new design strategy for detergents in membrane protein research.
Collapse
Affiliation(s)
- Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Maiko Schulze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Yasmine B Maier
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Stephan Warnke
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Kristin Folmert
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Christian Manz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
6
|
Haler JRN, Lemaur V, Far J, Kune C, Gerbaux P, Cornil J, De Pauw E. Sodium Coordination and Protonation of Poly(ethoxy phosphate) Chains in the Gas Phase Probed by Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:633-641. [PMID: 32020799 DOI: 10.1021/jasms.9b00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The two-dimensional shape information yielded by ion mobility-mass spectrometry (IM-MS), usually reported as collision cross section (CCS), is often correlated to the underlying three-dimensional structures of the ions through computational chemistry. Here, we used theoretical approaches based on molecular mechanics (MM), molecular dynamics (MD), and density functional theory (DFT) to elucidate the structures of sodiated poly(ethoxy phosphate) polymer ions at different degrees of polymerization (DP) for three different charge states (1+, 2+, and 3+) by comparing computational results to experimentally obtained CCS values. From the calculated structures, we extract several key interaction distances which merge in clusters for all screened charge states and DPs, independent of the three-dimensional structures and the polymer ion structural rearrangements. These distances were also used to extract the minimum coordination numbers in poly(ethoxy phosphate) and to describe the preferred coordination geometries. When sodiated and protonated polymer ions are compared, the experimental CCS evolutions differ at small DP values and merge at higher DPs. We investigated in more depth this difference for two selected species, namely, [PEtP5 + 2Na+]2+ and [PEtP5 + 2H+]2+. For the protonated ions, we explored the different protonation sites to extract three-dimensional structure candidates and rationalize the CCS behaviors.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMons), Place du Parc, 23, Mons 7000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons (UMons), Place du Parc, 23, Mons 7000, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMons), Place du Parc, 23, Mons 7000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, MolSys Research unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium
| |
Collapse
|
7
|
Mitra G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140260. [PMID: 31382021 DOI: 10.1016/j.bbapap.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Intrinsically disordered proteins (IDPs) are integral part of the proteome, regulating vital biological processes. Such proteins gained further visibility due to their key role in neurodegenerative diseases and cancer. IDPs however, escape structural characterization by traditional biophysical tools owing to their extreme flexibility and heterogeneity. In this review, we discuss the advantages of native mass spectrometry (MS) in analysing the atypical conformational dynamics of IDPs and recent advances made in the field. Especially, MS studies unravelling the conformational facets of IDPs involved in neurodegenerative diseases are highlighted. The limitations and the future promises of native MS while studying IDPs have been discussed.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore 560034, Karnataka, India.
| |
Collapse
|
8
|
Liu L, Dong X, Liu Y, Österlund N, Gräslund A, Carloni P, Li J. Role of hydrophobic residues for the gaseous formation of helical motifs. Chem Commun (Camb) 2019; 55:5147-5150. [PMID: 30977489 DOI: 10.1039/c9cc01898k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The secondary structure content of proteins and their complexes may change significantly on passing from aqueous solution to the gas phase (as in mass spectrometry experiments). In this work, we investigate the impact of hydrophobic residues on the formation of the secondary structure of a real protein complex in the gas phase. We focus on a well-studied protein complex, the amyloid-β (1-40) dimer (2Aβ). Molecular dynamics simulations reproduce the results of ion mobility-mass spectrometry experiments. In addition, a helix (not present in the solution) is identified involving 19FFAED23, consistent with infrared spectroscopy data on an Aβ segment. Our simulations further point to the role of hydrophobic residues in the formation of helical motifs - hydrophobic sidechains "shield" helices from being approached by residues that carry hydrogen bond sites. In particular, two hydrophobic phenylalanine residues, F19 and F20, play an important role for the helix, which is induced in the gas phase in spite of the presence of two carboxyl-containing residues.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Fuzhou University, 350002 Fuzhou, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Chouinard CD, Nagy G, Smith RD, Baker ES. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
11
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
12
|
Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 2018; 42:51-59. [DOI: 10.1016/j.cbpa.2017.10.022] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
|
13
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
14
|
Khanal N, Masellis C, Kamrath MZ, Clemmer DE, Rizzo TR. Glycosaminoglycan Analysis by Cryogenic Messenger-Tagging IR Spectroscopy Combined with IMS-MS. Anal Chem 2017; 89:7601-7606. [PMID: 28636333 PMCID: PMC5675075 DOI: 10.1021/acs.analchem.7b01467] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We combine ion mobility spectrometry with cryogenic, messenger-tagging, infrared spectroscopy and mass spectrometry to identify different isomeric disaccharides of chondroitin sulfate (CS) and heparan sulfate (HS), which are representatives of two major subclasses of glycosaminoglycans. Our analysis shows that while CS and HS disaccharide isomers have similar drift times, they can be uniquely distinguished by their vibrational spectrum between ∼3200 and 3700 cm-1 due to their different OH hydrogen-bonding patterns. We suggest that this combination of techniques is well suited to identify and characterize glycan isomers directly, which presents tremendous challenges for existing methods.
Collapse
Affiliation(s)
- Neelam Khanal
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chiara Masellis
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|