1
|
Houthuijs KJ, Berden G, Engelke UFH, Gautam V, Wishart DS, Wevers RA, Martens J, Oomens J. An In Silico Infrared Spectral Library of Molecular Ions for Metabolite Identification. Anal Chem 2023. [PMID: 37262385 DOI: 10.1021/acs.analchem.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Infrared ion spectroscopy (IRIS) continues to see increasing use as an analytical tool for small-molecule identification in conjunction with mass spectrometry (MS). The IR spectrum of an m/z selected population of ions constitutes a unique fingerprint that is specific to the molecular structure. However, direct translation of an IR spectrum to a molecular structure remains challenging, as reference libraries of IR spectra of molecular ions largely do not exist. Quantum-chemically computed spectra can reliably be used as reference, but the challenge of selecting the candidate structures remains. Here, we introduce an in silico library of vibrational spectra of common MS adducts of over 4500 compounds found in the human metabolome database. In total, the library currently contains more than 75,000 spectra computed at the DFT level that can be queried with an experimental IR spectrum. Moreover, we introduce a database of 189 experimental IRIS spectra, which is employed to validate the automated spectral matching routines. This demonstrates that 75% of the metabolites in the experimental data set are correctly identified, based solely on their exact m/z and IRIS spectrum. Additionally, we demonstrate an approach for specifically identifying substructures by performing a search without m/z constraints to find structural analogues. Such an unsupervised search paves the way toward the de novo identification of unknowns that are absent in spectral libraries. We apply the in silico spectral library to identify an unknown in a plasma sample as 3-hydroxyhexanoic acid, highlighting the potential of the method.
Collapse
Affiliation(s)
- Kas J Houthuijs
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Udo F H Engelke
- Department of Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Vasuk Gautam
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ron A Wevers
- Department of Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
2
|
Yatsyna V, Abikhodr AH, Ben Faleh A, Warnke S, Rizzo TR. High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform. Anal Chem 2022; 94:2912-2917. [PMID: 35113536 PMCID: PMC8851427 DOI: 10.1021/acs.analchem.1c04843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ali H. Abikhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Carlo MJ, Patrick AL. Infrared multiple photon dissociation (IRMPD) spectroscopy and its potential for the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:14-25. [PMID: 34993503 PMCID: PMC8713122 DOI: 10.1016/j.jmsacl.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy is a powerful tool used to probe the vibrational modes-and, by extension, the structure-of an ion within an ion trap mass spectrometer. Compared to traditional FTIR spectroscopy, IRMPD spectroscopy has advantages including its sensitivity and its relative ability to handle complex mixtures. While IRMPD has historically been a technique for fundamental analyses, it is increasingly being applied in a more analytical fashion. Notable recent demonstrations pertinent to the clinical laboratory and adjacent interests include analysis of modified amino acids/residues and carbohydrates, structural elucidation (including isomeric differentiation) of metabolites, identification of novel illicit drugs, and structural studies of various biomolecules and pharmaceuticals. Improvements in analysis time, coupling to commercial instruments, and integration with separations methods are all drivers toward the realization of these analytical applications. Additional improvements in these areas, along with advances in benchtop tunable IR sources and increased cross-discipline collaboration, will continue to drive innovation and widespread adoption. The goal of this tutorial article is to briefly present the fundamentals and instrumentation of IRMPD spectroscopy, as an overview of the utility of this technique for helping to answer questions relevant to clinical analysis, and to highlight limitations to widespread adoption, as well as promising directions in which the field may be heading.
Collapse
Key Words
- 2-AEP, 2-aminoethylphosphonic acid
- 2P1EA, 2-phenyl-1-ethanolamine
- CIVP, cryogenic ion vibrational predissociation spectroscopy
- CLIO, Centre Laser Infrarouge d’Orsay
- DFT, density functional theory
- FA, fluoroamphetamine
- FEL, free electron laser
- FELIX, Free Electron Laser for Infrared eXperiments
- FMA, fluoromethamphetamine
- FTICR, Fourier transform ion cyclotron resonance
- GC–MS, gas chromatography-mass spectrometry
- GSNO, S- nitro glutathione
- GlcNAc, n-Acetylglucosamine
- IR, infrared
- IR2MS3, infrared-infrared double-resonance multi-stage mass spectrometry
- IRMPD, infrared multiple photon dissociation (IRMPD)
- IRMPD-MS, infrared multiple photon dissociation spectroscopy mass spectrometry
- IRPD, infrared predissociation spectroscopy
- IVR, intramolecular vibrational redistribution
- Infrared multiple photon dissociation spectroscopy
- LC, liquid chromatography
- LC-MS, liquid chromatography-mass spectrometry
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- MDA, methylenedioxyamphetamine
- MDMA, methylenedioxymethamphetamine
- MMC, methylmethcathinone
- MS/MS, tandem mass spectrometry
- MSn, multi-stage mass spectrometry
- Mass spectrometry
- Metabolites
- NANT, N-acetyl-N-nitrosotryptophan
- OPO/A, optical parametric oscillator/amplifier
- PTM, post-translational modification
- Pharmaceuticals
- Post-translational modifications
- SNOCys, S-nitrosocysteine
- UV, ultraviolet
- UV-IR, ultraviolet-infrared
- Vibrational spectroscopy
- cw, continuous wave
- α-PVP, alpha-pyrrolidinovalerophenone
Collapse
Affiliation(s)
- Matthew J. Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amanda L. Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
4
|
van Outersterp R, Engelke UF, Merx J, Berden G, Paul M, Thomulka T, Berkessel A, Huigen MC, Kluijtmans LA, Mecinović J, Rutjes FP, van Karnebeek CD, Wevers RA, Boltje TJ, Coene KL, Martens J, Oomens J. Metabolite Identification Using Infrared Ion Spectroscopy─Novel Biomarkers for Pyridoxine-Dependent Epilepsy. Anal Chem 2021; 93:15340-15348. [PMID: 34756024 PMCID: PMC8613736 DOI: 10.1021/acs.analchem.1c02896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.
Collapse
Affiliation(s)
- Rianne
E. van Outersterp
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Udo F.H. Engelke
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jona Merx
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Mathias Paul
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Thomas Thomulka
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Albrecht Berkessel
- Department
of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Marleen C.D.G. Huigen
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A.J. Kluijtmans
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jasmin Mecinović
- University
of Southern Denmark, Department of Physics,
Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark
| | - Floris P.J.T. Rutjes
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Clara D.M. van Karnebeek
- Department
of Pediatrics-Metabolic Diseases, Radboud Center for Mitochondrial
Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute
for Molecules and Materials, Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Karlien L.M. Coene
- Department
of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 908, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
van Outersterp RE, Martens J, Peremans A, Lamard L, Cuyckens F, Oomens J, Berden G. Evaluation of table-top lasers for routine infrared ion spectroscopy in the analytical laboratory. Analyst 2021; 146:7218-7229. [PMID: 34724520 PMCID: PMC8607882 DOI: 10.1039/d1an01406d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Infrared ion spectroscopy is increasingly recognized as a method to identify mass spectrometry-detected analytes in many (bio)chemical areas and its integration in analytical laboratories is now on the horizon. Commercially available quadrupole ion trap mass spectrometers are attractive ion spectroscopy platforms but operate at relatively high pressures. This promotes collisional deactivation which directly interferes with the multiple-photon excitation process required for ion spectroscopy. To overcome this, infrared lasers having a high instantaneous power are required and therefore a majority of analytical studies have been performed at infrared free electron laser facilities. Proliferation of the technique to routine use in analytical laboratories requires table-top infrared lasers and optical parametric oscillators (OPOs) are the most suitable candidates, offering both relatively high intensities and reasonable spectral tuning ranges. Here, we explore the potential of a range of commercially available high-power OPOs for ion spectroscopy, comparing systems with repetition rates of 10 Hz, 20 kHz, 80 MHz and a continuous-wave (cw) system. We compare the performance for various molecular ions and show that the kHz and MHz repetition-rate systems outperform cw and 10 Hz systems in photodissociation efficiency and offer several advantages in terms of cost-effectiveness and practical implementation in an analytical laboratory not specialized in laser spectroscopy.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - André Peremans
- Laboratoire Physique de la Matière et du Rayonnement (P.M.R), Université de Namur, 5000 Namur, Belgium
| | | | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Hansen K. DECAY DYNAMICS IN MOLECULAR BEAMS. MASS SPECTROMETRY REVIEWS 2021; 40:725-740. [PMID: 32362024 DOI: 10.1002/mas.21630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The phenomenon of power law decays in molecular beams is reviewed. The transition from a canonical to a microcanonical description of the decay is analyzed, and the appearance of the power law decay derived. Deviations from a power law often contain information on parallel competing processes. This is illustrated with examples where thermal radiation or dark unimolecular channels are the competing processes. Also corrections to the power law due to finite heat capacities and from nonideal energy distributions are derived. Finally, the consequences for the interpretation of action spectroscopy data are reviewed. © 2020 The Authors. Mass Spectrometry Reviews published by Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Klavs Hansen
- Department of Physics, School of Science, Center for Joint Quantum Studies, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
7
|
van Outersterp RE, Martens J, Berden G, Koppen V, Cuyckens F, Oomens J. Mass spectrometry-based identification of ortho-, meta- and para-isomers using infrared ion spectroscopy. Analyst 2021; 145:6162-6170. [PMID: 32924040 DOI: 10.1039/d0an01119c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Distinguishing positional isomers, such as compounds having different substitution patterns on an aromatic ring, presents a significant challenge for mass spectrometric analyses and is a frequently encountered difficulty in, for example, drug metabolism research. In contrast to mass spectrometry, IR spectroscopy is a well-known and powerful tool in the distinction of ortho-, meta- and para-isomers, but is not applicable to low-abundance compounds in complex mixtures such as often targeted in bioanalytical studies. Here, we demonstrate the use of infrared ion spectroscopy (IRIS) as a novel method that facilitates the differentiation between positional isomers of disubstituted phenyl-containing compounds and that can be applied in mass spectrometry-based complex mixture analysis. By analyzing different substitution patterns over several sets of isomeric compounds, we show that IRIS is able to consistently probe the diagnostic CH out-of-plane vibrations that are sensitive to positional isomerism. We show that these modes are largely independent of the chemical functionality contained in the ring substituents and of the type of ionization. We also show that IRIS spectra often identify the positional isomer directly, even in the absence of reference spectra obtained from physical standards or from computational prediction. We foresee that this method will be generally applicable to the identification of disubstituted phenyl-containing compounds.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Penna TC, Cervi G, Rodrigues-Oliveira AF, Yamada BD, Lima RZC, Menegon JJ, Bastos EL, Correra TC. Development of a photoinduced fragmentation ion trap for infrared multiple photon dissociation spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8635. [PMID: 31677291 DOI: 10.1002/rcm.8635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a three-dimensional ion trap for infrared multiple photon dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of a myriad of chemical systems, including isomer mixtures. METHODS A modified three-dimensional ion trap was coupled to a CO2 laser and an optical parametric oscillator/optical parametric amplifier (OPO/OPA) system operating in the range 2300 to 4000 cm-1 . Density functional theory vibrational frequency calculations were carried out to support spectral assignments. RESULTS Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low-power laser radiation is also discussed. CONCLUSIONS OPO/OPA and CO2 laser-assisted dissociation of gas-phase ions was successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.
Collapse
Affiliation(s)
- Tatiana C Penna
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Gustavo Cervi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - André F Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Bruno D Yamada
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Rafael Z C Lima
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Jair J Menegon
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Thiago C Correra
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Kranenburg RF, van Geenen FAMG, Berden G, Oomens J, Martens J, van Asten AC. Mass-Spectrometry-Based Identification of Synthetic Drug Isomers Using Infrared Ion Spectroscopy. Anal Chem 2020; 92:7282-7288. [PMID: 32286052 PMCID: PMC7240807 DOI: 10.1021/acs.analchem.0c00915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Infrared ion spectroscopy (IRIS), a mass-spectrometry-based technique exploiting resonant infrared multiple photon dissociation (IRMPD), has been applied for the identification of novel psychoactive substances (NPS). Identification of the precise isomeric forms of NPS is of significant forensic relevance since legal controls are dependent on even minor molecular differences such as a single ring-substituent position. Using three isomers of fluoroamphetamine and two ring-isomers of both MDA and MDMA, we demonstrate the ability of IRIS to distinguish closely related NPS. Computationally predicted infrared (IR) spectra are shown to correspond with experimental spectra and could explain the molecular origins of their distinctive IR absorption bands. IRIS was then used to investigate a confiscated street sample containing two unknown substances. One substance could easily be identified by comparison to the IR spectra of reference standards. For the other substance, however, this approach proved inconclusive due to incomplete mass spectral databases as well as a lack of available reference compounds, two common analytical limitations resulting from the rapid development of NPS. Most excitingly, the second unknown substance could nevertheless be identified by using computationally predicted IR spectra of several potential candidate structures instead of their experimental reference spectra.
Collapse
Affiliation(s)
- Ruben F. Kranenburg
- Unit
Amsterdam, Forensic Laboratory, Dutch National
Police, Kabelweg 25, Amsterdam 1014 BA, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The
Netherlands
| | - Fred A. M. G. van Geenen
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The
Netherlands
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Arian C. van Asten
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The
Netherlands
- Co
van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic
Science and Medicine, P.O. Box 94157, Amsterdam 1090 GD, The
Netherlands
| |
Collapse
|
10
|
Martens J, van Outersterp RE, Vreeken RJ, Cuyckens F, Coene KLM, Engelke UF, Kluijtmans LAJ, Wevers RA, Buydens LMC, Redlich B, Berden G, Oomens J. Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry - A tutorial perspective. Anal Chim Acta 2019; 1093:1-15. [PMID: 31735202 DOI: 10.1016/j.aca.2019.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
Combining the individual analytical strengths of mass spectrometry and infrared spectroscopy, infrared ion spectroscopy is increasingly recognized as a powerful tool for small-molecule identification in a wide range of analytical applications. Mass spectrometry is itself a leading analytical technique for small-molecule identification on the merit of its outstanding sensitivity, selectivity and versatility. The foremost shortcoming of the technique, however, is its limited ability to directly probe molecular structure, especially when contrasted against spectroscopic techniques. In infrared ion spectroscopy, infrared vibrational spectra are recorded for mass-isolated ions and provide a signature that can be matched to reference spectra, either measured from standards or predicted using quantum-chemical calculations. Here we present an overview of the potential for this technique to develop into a versatile analytical method for identifying molecular structures in mass spectrometry-based analytical workflows. In this tutorial perspective, we introduce the reader to the technique of infrared ion spectroscopy and highlight a selection of recent experimental advances and applications in current analytical challenges, in particular in the field of untargeted metabolomics. We report on the coupling of infrared ion spectroscopy with liquid chromatography and present experiments that serve as proof-of-principle examples of strategies to address outstanding challenges.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| | - Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Rob J Vreeken
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Udo F Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A J Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lutgarde M C Buydens
- Radboud University, Institute for Molecules and Materials, Chemometrics, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands; van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH, Amsterdam, Science Park 908, the Netherlands.
| |
Collapse
|
11
|
Tesler LF, Cismesia AP, Bell MR, Bailey LS, Polfer NC. Operation and Performance of a Mass-Selective Cryogenic Linear Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2115-2124. [PMID: 30062479 PMCID: PMC6301008 DOI: 10.1007/s13361-018-2026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
We report on the performance of a cryogenic 2D linear ion trap (cryoLIT) that is shown to be mass-selective in the temperature range of 17-295 K. As the cryoLIT is cooled, the ejection voltages during the mass instability scan decrease, which results in an effective mass shift to lower m/z relative to room temperature. This is attributed to a decrease in trap radius caused by thermal contraction. Additionally, the cryoLIT generates reproducible mass spectra from day-to-day, and is capable of performing stored waveform inverse Fourier transform (SWIFT) mass isolation of fragile N2-tagged ions for the purpose of background-free infrared dissociation spectroscopy. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Larry F Tesler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Matthew R Bell
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
12
|
Martens J, Berden G, Bentlage H, Coene KLM, Engelke UF, Wishart D, van Scherpenzeel M, Kluijtmans LAJ, Wevers RA, Oomens J. Unraveling the unknown areas of the human metabolome: the role of infrared ion spectroscopy. J Inherit Metab Dis 2018; 41:367-377. [PMID: 29556837 PMCID: PMC5959965 DOI: 10.1007/s10545-018-0161-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 11/30/2022]
Abstract
The identification of molecular biomarkers is critical for diagnosing and treating patients and for establishing a fundamental understanding of the pathophysiology and underlying biochemistry of inborn errors of metabolism. Currently, liquid chromatography/high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy are the principle methods used for biomarker research and for structural elucidation of small molecules in patient body fluids. While both are powerful techniques, several limitations exist that often make the identification of unknown compounds challenging. Here, we describe how infrared ion spectroscopy has the potential to be a valuable orthogonal technique that provides highly-specific molecular structure information while maintaining ultra-high sensitivity. Here, we characterize and distinguish two well-known biomarkers of inborn errors of metabolism, glutaric acid for glutaric aciduria and ethylmalonic acid for short-chain acyl-CoA dehydrogenase deficiency, using infrared ion spectroscopy. In contrast to tandem mass spectra, in which ion fragments can hardly be predicted, we show that the prediction of an IR spectrum allows reference-free identification in the case that standard compounds are either commercially or synthetically unavailable. Finally, we illustrate how functional group information can be obtained from an IR spectrum for an unknown and how this is valuable information to, for example, narrow down a list of candidate structures resulting from a database query. Early diagnosis in inborn errors of metabolism is crucial for enabling treatment and depends on the identification of biomarkers specific for the disorder. Infrared ion spectroscopy has the potential to play a pivotal role in the identification of challenging biomarkers.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands.
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - Herman Bentlage
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Udo F Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - David Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Monique van Scherpenzeel
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Leo A J Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands.
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Cismesia AP, Bell MR, Tesler LF, Alves M, Polfer NC. Infrared ion spectroscopy: an analytical tool for the study of metabolites. Analyst 2018; 143:1615-1623. [PMID: 29497730 PMCID: PMC6186386 DOI: 10.1039/c8an00087e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational ion spectroscopy techniques coupled with mass spectrometry are applied to standard metabolites as a proof-of-principle demonstration for the structural identification of unknown metabolites. The traditional room temperature infrared multiple photon dissociation (IRMPD) spectroscopy technique is shown to differentiate chemical moieties in isobaric and isomeric variants. These results are compared to infrared spectra of cryogenically cooled analyte ions, showing enhanced spectral resolution, and thus also improved differentiation between closely related molecules, such as isomers. The cryogenic spectroscopy is effected in a recently developed mass-selective cryogenic linear ion trap, which is capable of high sensitivity and the ability to measure the IR spectra of multiple analytes simultaneously.
Collapse
Affiliation(s)
- Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA.
| | | | | | | | | |
Collapse
|