1
|
Kolbowski L, Belsom A, Pérez-López AM, Ly T, Rappsilber J. Light-Induced Orthogonal Fragmentation of Crosslinked Peptides. JACS AU 2023; 3:2123-2130. [PMID: 37654600 PMCID: PMC10466327 DOI: 10.1021/jacsau.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Crosslinking mass spectrometry provides pivotal information on the structure and interaction of proteins. MS-cleavable crosslinkers are regarded as a cornerstone for the analysis of complex mixtures. Yet they fragment under similar conditions as peptides, leading to mixed fragmentation spectra of the crosslinker and peptide. This hampers selecting individual peptides for their independent identification. Here, we introduce orthogonal cleavage using ultraviolet photodissociation (UVPD) to increase crosslinker over peptide fragmentation. We designed and synthesized a crosslinker that can be cleaved at 213 nm in a commercial mass spectrometer configuration. In an analysis of crosslinked Escherichia coli lysate, the crosslinker-to-peptide fragment intensity ratio increases from nearly 1 for a conventionally cleavable crosslinker to 5 for the UVPD-cleavable crosslinker. This largely increased the sensitivity of selecting the individual peptides for MS3, even more so with an improved doublet detection algorithm. Data are available via ProteomeXchange with identifier PXD040267.
Collapse
Affiliation(s)
- Lars Kolbowski
- Chair
of Bioanalytics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Adam Belsom
- Chair
of Bioanalytics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ana M. Pérez-López
- Chair
of Bioanalytics, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Tony Ly
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Juri Rappsilber
- Chair
of Bioanalytics, Technische Universität
Berlin, 10623 Berlin, Germany
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, U.K.
- Si-M/″Der
Simulierte Mensch″, a Science Framework of Technische Universität
Berlin and Charité - Universitätsmedizin Berlin, 10623 Berlin, Germany
| |
Collapse
|
2
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Macias LA, Brodbelt JS. Investigation of Product Ions Generated by 193 nm Ultraviolet Photodissociation of Peptides and Proteins Containing Disulfide Bonds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1315-1324. [PMID: 35736955 DOI: 10.1021/jasms.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disulfide bridges are unique post-translational modifications (PTM) that contribute to protein architecture and modulate function. This PTM, however, challenges top-down mass spectrometry by cyclizing stretches of the protein sequence. In order to produce and release detectable product ions that contribute to the assignment of proteoforms, regions of a protein encapsulated by disulfide bonds require two fragmentation events: cleavage of the protein backbone and cleavage of the disulfide bond. Traditional collisional activation methods do not cleave disulfide bonds efficiently, often leading to low sequence coverage of proteins that incorporate this feature. To address this challenge, we have evaluated the fragmentation pathways enabled by 193 nm ultraviolet photodissociation (UVPD) and UVPD coupled to electron transfer dissociation for the characterization of protein structures incorporating disulfide bonds. Cleavage of disulfide bonds by either approach results in S-S and C-S dissociation products that result from a combination of homolytic cleavage and hydrogen-transfer processes. Characterization of these product ions elevates interpretation of complex top-down spectra of proteins that incorporate disulfide bonds.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Gammelgaard SK, Petersen SB, Haselmann KF, Nielsen PK. Characterization of Insulin Dimers by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1910-1918. [PMID: 33084334 DOI: 10.1021/jasms.0c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-molecular weight products (HMWP) are an important critical quality attribute in research and development of insulin biopharmaceuticals. We here demonstrate on two case studies of covalent insulin dimers, induced by Fe2+ incubation or ultraviolet (UV) light stress, that de novo characterization in top-down mass spectrometry (MS) workflows can identify cross-link types and sites. On the MS2 level, electron-transfer/higher-energy collision dissociation (EThcD) efficiently cleaved the interchain disulfide bonds in the dimers to reveal cross-link connectivities between chains. The combined utilization of EThcD and 213 nm ultraviolet photodissociation (UVPD) facilitated identification of the chemical composition of the cross-links. Identification of cross-link sites between chains at residue level was achievable for both dimers with MS3 analysis of MS2 fragments cleaved at the cross-link or additionally the interchain disulfide bonds. UVPD provided identification of cross-link sites in the Fe2+-induced dimer without MS3, while cross-link site identification with MS2 was not possible for the UV light-induced dimer. Thus, using varied multistage approaches, it was discovered that in the UV light-induced dimer, Tyr14 of the A-chain participated in an -O-S- cross-link in which the sulfur was derived either from Cys7 or Cys19 of the B-chain. In the Fe2+-induced dimer, Phe1 from both B-chains were cross-linked through a -CH2-. The UV chromophoric side chain of Phe1 was indicated in the cross-link, explaining why UVPD-MS2 was effective in fragmenting the cross-link and nearby backbone bonds. Our results demonstrated that higher-energy collisional dissociation (HCD), EThcD, and UVPD combined with MS3 were powerful tools for direct de novo characterization of cross-linked insulin dimers.
Collapse
Affiliation(s)
- Simon K Gammelgaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B Petersen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F Haselmann
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| |
Collapse
|
5
|
Zhang K, Ma L, Zhou M, Shi Y, Li S, Wang Y, Kong X. Wavelength-Dependent Ultraviolet Photodissociation of Protonated Tryptamine. J Phys Chem A 2020; 124:5280-5287. [PMID: 32536155 DOI: 10.1021/acs.jpca.0c02528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ultraviolet photodissociation (UVPD) experiments of protonated tryptamine ([Tryp+H]+) have been implemented by a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer combined with a wavelength-tunable optical parametric oscillator (OPO) laser. UVPD mass spectra under different laser wavelengths have been obtained, in which the dependence of the yield of fragment ions on the laser wavelength was observed. The UVPD spectrum of [Tryp+H]+ has been obtained in the range of 210-310 nm. Besides the previously reported two competitive channels of H loss and NH3 loss, two important channels of losing CH2NH and CH2NH2 units were observed and further studied by UV-UV tandem mass spectrometry and theoretical calculations. Interestingly, results show that the pair of competitive channels of CH2NH loss and CH2NH2 loss are both from the McLafferty-type rearrangement caused by ππ* electronic excited states. After the excitation, the two different dissociation pathways produce two different ion-neutral complexes, respectively. The wavelength-dependent dissociation and the existing competitive channels shown in this study reflect the diversity of UVPD processes of such organic molecules.
Collapse
Affiliation(s)
- Kailin Zhang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Lifu Ma
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Min Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,Department of Physics, Anhui Normal University, Wuhu 241000, China
| | - Yingying Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shuqi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xianglei Kong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Kolbowski L, Belsom A, Rappsilber J. Ultraviolet Photodissociation of Tryptic Peptide Backbones at 213 nm. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1282-1290. [PMID: 32352297 PMCID: PMC7273743 DOI: 10.1021/jasms.0c00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
We analyzed the backbone fragmentation behavior of tryptic peptides of a four-protein mixture and of E. coli lysate subjected to ultraviolet photodissociation (UVPD) at 213 nm on a commercially available UVPD-equipped tribrid mass spectrometer. We obtained 15 178 unique high-confidence peptide UVPD spectrum matches by recording a reference beam-type collision-induced dissociation (HCD) spectrum of each precursor, ensuring that our investigation includes a broad selection of peptides, including those that fragmented poorly by UVPD. Type a, b, and y ions were most prominent in UVPD spectra, and median sequence coverage ranged from 5.8% (at 5 ms laser excitation time) to 45.0% (at 100 ms). Overall, the sequence fragment intensity remained relatively low (median: 0.4% (5 ms) to 16.8% (100 ms) of total intensity), and the remaining precursor intensity, high. The sequence coverage and sequence fragment intensity ratio correlated with the precursor charge density, suggesting that UVPD at 213 nm may suffer from newly formed fragments sticking together due to noncovalent interactions. The UVPD fragmentation efficiency therefore might benefit from supplemental activation, as was shown for ETD. Aromatic amino acids, most prominently tryptophan, facilitated UVPD. This points to aromatic tags as possible enhancers of UVPD. Data are available via ProteomeXchange with identifier PXD018176 and on spectrumviewer.org/db/UVPD-213nm-trypPep.
Collapse
Affiliation(s)
- Lars Kolbowski
- Bioanalytics, Institute of Biotechnology, Technische
Universität Berlin, 13355 Berlin, Germany
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | - Adam Belsom
- Bioanalytics, Institute of Biotechnology, Technische
Universität Berlin, 13355 Berlin, Germany
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Edinburgh EH9 3BF, United
Kingdom
| | | |
Collapse
|
7
|
Gammelgaard S, Petersen SB, Haselmann KF, Nielsen PK. Direct Ultraviolet Laser-Induced Reduction of Disulfide Bonds in Insulin and Vasopressin. ACS OMEGA 2020; 5:7962-7968. [PMID: 32309706 PMCID: PMC7161042 DOI: 10.1021/acsomega.9b04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
Ultraviolet (UV) light has been shown to induce reduction of disulfide bonds in proteins in solution. The photoreduction is proposed to be a result of electron donation from excited Tyr or Trp residues. In this work, a powerful UV femtosecond laser was used to generate photoreduced products, while the hypothesis of Tyr/Trp mediation was studied with spectroscopy and mass spectrometry. With limited irradiation times of 3 min or less at 280 nm, the laser-induced reduction in arginine vasopressin and human insulin led to significant yields of ∼3% stable reduced product. The photogenerated thiols required acidic pH for stabilization, while neutral pH primarily caused scrambling and trisulfide formation. Interestingly, there was no direct evidence that Tyr/Trp mediation was a required criterion for the photoreduction of disulfide bonds. Intermolecular electron transfer remained a possibility for insulin but was ruled out for vasopressin. We propose that an additional mechanism should be increasingly considered in UV light-induced reduction of disulfide bonds in solution, in which a single UV photon is directly absorbed by the disulfide bond.
Collapse
Affiliation(s)
- Simon
K. Gammelgaard
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B. Petersen
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F. Haselmann
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- . Tel: (+45) 3079 0375
| |
Collapse
|
8
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Fornelli L, Srzentić K, Toby TK, Doubleday PF, Huguet R, Mullen C, Melani RD, Dos Santos Seckler H, DeHart CJ, Weisbrod CR, Durbin KR, Greer JB, Early BP, Fellers RT, Zabrouskov V, Thomas PM, Compton PD, Kelleher NL. Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Mol Cell Proteomics 2020; 19:405-420. [PMID: 31888965 PMCID: PMC7000117 DOI: 10.1074/mcp.tir119.001638] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134
| | | | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208; Proteinaceous Inc., Evanston, Illinois 60201
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
10
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Talbert LE, Julian RR. Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1601-1608. [PMID: 31222676 PMCID: PMC6697561 DOI: 10.1007/s13361-019-02262-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Mass spectrometry affords rapid and sensitive analysis of peptides and proteins. Coupling spectroscopy with mass spectrometry allows for the development of new methods to enhance biomolecular structure determination. Herein, we demonstrate two new energy acceptors that can be utilized for action-excitation energy transfer experiments. In the first system, C-S bonds in methionine act as energy acceptors from native chromophores, including tyrosine, tryptophan, and phenylalanine. Comparison among chromophores reveals that tyrosine transfers energy most efficiently at 266 nm, but phenylalanine and tryptophan also transfer energy with comparable efficiencies. Overall, the C-S bond dissociation yields following energy transfer are low for methionine, which led to an investigation of selenomethionine, a common analog that is found in many naturally occurring proteins. Sulfur and selenium are chemically similar, but C-Se bonds are weaker than C-S bonds and have lower lying σ* anti-bonding orbitals. Excitation of peptides containing tyrosine and tryptophan results in efficient energy transfer to selenomethionine and abundant C-Se bond dissociation. A series of helical peptides were examined where the positions of the donor or acceptor were systematically scanned to explore the influence of distance and helix orientation on energy transfer. The distance was found to be the primary factor affecting energy transfer efficiency, suggesting that selenomethionine may be a useful acceptor for probing protein structure in the gas phase.
Collapse
Affiliation(s)
- Lance E Talbert
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Talbert LE, Zhang X, Hendricks N, Alizadeh A, Julian RR. Synthesis of New S-S and C-C Bonds by Photoinitiated Radical Recombination Reactions in the Gas Phase. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 441:25-31. [PMID: 31607789 PMCID: PMC6788626 DOI: 10.1016/j.ijms.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoinitiated radical chemistry has proven to be useful for breaking covalent bonds within many biomolecules in the gas phase. Herein, we demonstrate that radical chemistry is useful for bond synthesis in the gas phase. Single peptides containing two cysteine residues capped with propylmercaptan (PM) often form disulfide bonds following ultraviolet excitation at 266 nm and loss of both PM groups. Similarly, noncovalently bound peptide pairs where each peptide contains a single cysteine residue can be induced to form disulfide bonds. Comparison with disulfide bound species sampled directly from solution yields identical collisional activation spectra, suggesting that native disulfide bonds have been recapitulated in the gas phase syntheses. Another approach utilizing radical chemistry for covalent bond synthesis involves creation of a reactive diradical that can first abstract hydrogen from a target peptide, creating a new radical site, and then recombine the second radical with the new radical to form a covalent bond. This chemistry is illustrated with 2-(hydroxymethyl-3,5-diiodobenzoate)-18-crown-6 ether, which attaches noncovalently to protonated primary amines in peptides and proteins. Following photoactivation and crosslinking, the site of noncovalent adduct attachment can frequently be determined. The ramifications of these observations on peptide structure and noncovalent attachment of 18-crown-6-based molecules is discussed.
Collapse
|
13
|
Bonner J, Talbert LE, Akkawi N, Julian RR. Simplified identification of disulfide, trisulfide, and thioether pairs with 213 nm UVPD. Analyst 2018; 143:5176-5184. [PMID: 30264084 PMCID: PMC6197924 DOI: 10.1039/c8an01582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disulfide heterogeneity and other non-native crosslinks introduced during therapeutic antibody production and storage could have considerable negative effects on clinical efficacy, but tracking these modifications remains challenging. Analysis must also be carried out cautiously to avoid introduction of disulfide scrambling or reduction, necessitating the use of low pH digestion with less specific proteases. Herein we demonstrate that 213 nm ultraviolet photodissociation streamlines disulfide elucidation through bond-selective dissociation of sulfur-sulfur and carbon-sulfur bonds in combination with less specific backbone dissociation. Importantly, both types of fragmentation can be initiated in a single MS/MS activation stage. In addition to disulfide mapping, it is also shown that thioethers and trisulfides can be identified by characteristic fragmentation patterns. The photochemistry resulting from 213 nm excitation facilitates a simplified, two-tiered data processing approach that allows observation of all native disulfide bonds, scrambled disulfide bonds, and non-native sulfur-based linkages in a pepsin digest of Rituximab. Native disulfides represented the majority of bonds according to ion count, but the highly solvent-exposed heavy/light interchain disulfides were found to be most prone to modification. Production and storage methods that facilitate non-native links are discussed. Due to the importance of heavy and light chain connectivity for antibody structure and function, this region likely requires particular attention in terms of its influence on maintaining structural fidelity.
Collapse
Affiliation(s)
- James Bonner
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|