1
|
Elsayed YY, Kühl T, Imhof D. Edman Degradation Reveals Unequivocal Analysis of the Disulfide Connectivity in Peptides and Proteins. Anal Chem 2024; 96:4057-4066. [PMID: 38407829 DOI: 10.1021/acs.analchem.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Disulfide bridges in peptides and proteins play an essential role in maintaining their conformation, structural integrity, and consequently function. Despite ongoing efforts, it is still not possible to detect disulfide bonds and the connectivity of multiply bridged peptides directly through a simple and sufficiently validated protein sequencing or peptide mapping method. Partial or complete reduction and chemical cysteine modification are required as initial steps, followed by the application of a proper detection method. Edman degradation (ED) has been used for primary sequence determination but is largely neglected since the establishment of mass spectrometry (MS)-based protein sequencing. Here, we evaluated and thoroughly characterized the phenyl thiohydantoin (PTH) cysteine derivatives PTH-S-methyl cysteine and PTH-S-carbamidomethyl cysteine as bioanalytical standards for cysteine detection and quantification as well as for the elucidation of the disulfide connectivity in peptides by ED. Validation of the established derivatives was performed according to the guidelines of the International Committee of Harmonization on bioanalytical method validation, and their analytical properties were confirmed as reference standards. A series of model peptides was sequenced to test the usability of the PTH-Cys-derivatives as standards, whereas the native disulfide-bonded peptides CCAP-vil, μ-conotoxin KIIIA, and human insulin were used as case studies to determine their disulfide bond connectivity completely independent of MS analysis.
Collapse
Affiliation(s)
- Yomnah Y Elsayed
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Cairo 11566, Egypt
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
2
|
Watts E, Thyer R, Ellington AD, Brodbelt JS. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal Chem 2022; 94:11175-11184. [PMID: 35930618 DOI: 10.1021/acs.analchem.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
4
|
Reynaud S, Ciolek J, Degueldre M, Saez NJ, Sequeira AF, Duhoo Y, Brás JLA, Meudal H, Cabo Díez M, Fernández Pedrosa V, Verdenaud M, Boeri J, Pereira Ramos O, Ducancel F, Vanden Driessche M, Fourmy R, Violette A, Upert G, Mourier G, Beck-Sickinger AG, Mörl K, Landon C, Fontes CMGA, Miñambres Herráiz R, Rodríguez de la Vega RC, Peigneur S, Tytgat J, Quinton L, De Pauw E, Vincentelli R, Servent D, Gilles N. A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. J Med Chem 2020; 63:8250-8264. [PMID: 32602722 DOI: 10.1021/acs.jmedchem.0c00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in Escherichia coli generated a physical bank of 3597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαβ structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affects ion channels, the known targets of their toxin scaffolds, but binds to four melanocortin receptors with low micromolar affinities and activates the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.
Collapse
Affiliation(s)
- Steve Reynaud
- Université Paris-Sud, 15 Rue Georges Clemenceau, Orsay 91405 France.,Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Justyna Ciolek
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Michel Degueldre
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium.,Department of Analytical Science Biologicals, UCB, Chemin du Foriest, Braine L'Alleud 1420 Belgium
| | - Natalie J Saez
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Ana Filipa Sequeira
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Yoan Duhoo
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France.,Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Joana L A Brás
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Hervé Meudal
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Miguel Cabo Díez
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Victoria Fernández Pedrosa
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | - Marion Verdenaud
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Julia Boeri
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Oscar Pereira Ramos
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Frédéric Ducancel
- Université Paris Saclay, CEA, Département IDMIT, 18 route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Margot Vanden Driessche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, Montroeul-au-bois 7911 Belgium
| | - Grégory Upert
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Gilles Mourier
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | | | - Karin Mörl
- Institute of Biochemistry, Universitat Leipzig, Leipzig 04103 Germany
| | - Céline Landon
- Centre National de la Recherche Scientifique, Centre de Biophysique Moléculaire, rue Charles Sadron, Orléans 45071 France
| | - Carlos M G A Fontes
- Universidade de Lisboa, CIISA - Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisboa 1300-477 Portugal.,NZYTech Lda, Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, Lisboa 1649-038 Portugal
| | - Rebeca Miñambres Herráiz
- Next-Generation Sequencing Laboratory, Sistemas Genómicos Ltd., Ronda de Guglielmo Marconi, 6, Paterna 46980 Spain
| | | | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Herestraat 49, Leuven 3000 Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Université de Liège, Allée du six Aout 11, Quartier Agora, Liege 4000 Belgium
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Marseille 13288 France
| | - Denis Servent
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| | - Nicolas Gilles
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette 91191 France
| |
Collapse
|
5
|
Asakawa D, Takahashi H, Iwamoto S, Tanaka K. Hydrogen attachment dissociation of peptides containing disulfide bonds. Phys Chem Chem Phys 2019; 21:26049-26057. [PMID: 31746862 DOI: 10.1039/c9cp03923f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of tandem mass spectrometry (MS/MS) and hydrogen attachment dissociation (HAD) is a useful method for peptide sequence analysis. In this study, gas-phase fragmentation induced by the attachment of hydrogen to peptides containing disulfide bonds was investigated. Hydrogen attachment induced the cleavage of either the disulfide or N-Cα bond, which competitively occurred during HAD. The disulfide bond cleavage proceeded through an intermediate, which contains a thiyl radical (-S˙) and a thiol group (-SH). In contrast, N-Cα bond cleavage produced an intermediate containing an enol-imine group and α-carbon radical. The intermediate α-carbon radical then attacked the disulfide bond, resulting in a cyclic [z]+ fragment. The counterpart, [c + H]+˙ with a thiyl radical underwent further hydrogen attachment, producing [c + 2H]+. Because both disulfide and N-Cα bonds were cleaved by a single hydrogen attachment event, HAD-MS/MS can provide sequence information for the backbone region in the disulfide loop.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|