1
|
Tanaka Y, Yokoi H, Kaji H, Urasaki Y, Nishidate M, Nitta SI, Watanabe K, Ishida T, Tanaka K, Komatsu R, Yoshida K, Saito K, Saito Y, Yamazaki H. Current status of Imaging Mass Spectrometry in drug discovery and development: A survey highlighting technical challenges and future directions. Drug Metab Pharmacokinet 2025; 62:101485. [PMID: 40359683 DOI: 10.1016/j.dmpk.2025.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Imaging mass spectrometry (IMS) is used in various fields of pharmaceutical research and development, including the targeted delivery of administered drugs, drug distribution in tissues, drug toxicity analysis, and disease mechanisms. However, IMS is a relatively new technology that requires further validation before being accepted by authorities for regulatory compliance of new drugs. In 2020, an international survey was conducted in collaboration with the Imaging Mass Spectrometry Society (IMSS) and the Japan Association for Imaging Mass Spectrometry (JAIMS) to understand the status of IMS and to identify problems with its application. The survey revealed technical challenges in sample preparation, quantitative analysis of drugs in tissues, and data acquisition. Based on the 2020 survey results, we recently conducted a further detailed survey and had discussions within the JAIMS aimed at translating the results into specific experimental procedures and proposing feasible standard methods. This survey involved detailed questions on five themes: sample collection and storage, tissue section preparation, sample preparation, data analysis (including quantitative analysis and data correction methods), and data reproducibility. The questions were answered by JAIMS members working for ten companies. To resolve technical issues identified by the survey, we propose some realistic approaches toward standardization.
Collapse
Affiliation(s)
- Yukari Tanaka
- Leader of Japan Association for Imaging Mass Spectrometry, Drug Metabolism and Pharmacokinetics and Analytical Sciences, Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, 3-1-1 Futaba, Toyonaka, Osaka, 561-0825, Japan.
| | - Hiroyuki Yokoi
- Drug Metabolism and Pharmacokinetics Preclinical Research Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, 463-10 Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima, 771-0192, Japan.
| | - Hidefumi Kaji
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| | - Yoko Urasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Masanobu Nishidate
- Pharmaceutical Science Dept., Chugai Pharmaceutical Co., Ltd, 216 Totsukacho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Shin-Ichiro Nitta
- Corporate Planning Department, Corporate Strategy Division, Mediford Corporation, 1-15-10 Shimura, Itabashi-ku, Tokyo, 174-0056, Japan.
| | - Kenichi Watanabe
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan.
| | - Tomomi Ishida
- Global Drug Metabolism and Pharmacokinetics, Biopharmaceutical Assessments Unit, DHBL, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Kouji Tanaka
- DMPK Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| | - Rika Komatsu
- Laboratory for Drug Discovery Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan.
| | - Kenji Yoshida
- Drug Development Solutions Planning Department, Pharmaceutical Sciences Division, Sekisui Medical Co., Ltd, 2117 Muramatsu, Tokai, Ibaraki, 319-1182, Japan.
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Yoshiro Saito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
2
|
Kulasinghe A, Berrell N, Donovan ML, Nilges BS. Spatial-Omics Methods and Applications. Methods Mol Biol 2025; 2880:101-146. [PMID: 39900756 DOI: 10.1007/978-1-0716-4276-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Traditional tissue profiling approaches have evolved from bulk studies to single-cell analysis over the last decade; however, the spatial context in tissues and microenvironments has always been lost. Over the last 5 years, spatial technologies have emerged that enabled researchers to investigate tissues in situ for proteins and transcripts without losing anatomy and histology. The field of spatial-omics enables highly multiplexed analysis of biomolecules like RNAs and proteins in their native spatial context-and has matured from initial proof-of-concept studies to a thriving field with widespread applications from basic research to translational and clinical studies. While there has been wide adoption of spatial technologies, there remain challenges with the standardization of methodologies, sample compatibility, throughput, resolution, and ease of use. In this chapter, we discuss the current state of the field and highlight technological advances and limitations.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Naomi Berrell
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Meg L Donovan
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | | |
Collapse
|
3
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Zambrzycki SC, Saberi S, Biggs R, Eskandari N, Delisi D, Taylor H, Mehta AS, Drake RR, Gentile S, Bradshaw AD, Ostrowski M, Angel PM. Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI). Matrix Biol Plus 2024; 24:100161. [PMID: 39435160 PMCID: PMC11492733 DOI: 10.1016/j.mbplus.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
While numerous approaches have been reported towards understanding single cell regulation, there is limited understanding of single cell production of extracellular matrix phenotypes. Collagens are major proteins of the extracellular microenvironment extensively used in basic cell culture, tissue engineering, and biomedical applications. However, identifying compositional regulation of collagen remains challenging. Here, we report the development of In vitro ExtraCellular Matrix Mass Spectrometry Imaging (ivECM-MSI) as a tool to rapidly and simultaneously define collagen subtypes from coatings and basic cell culture applications. The tool uses the mass spectrometry imaging platform with reference libraries to produce visual and numerical data types. The method is highly integrated with basic in vitro strategies as it may be used with conventional cell chambers on minimal numbers of cells and with minimal changes to biological experiments. Applications tested include semi-quantitation of collagen composition in culture coatings, time course collagen deposition, deposition altered by gene knockout, and changes induced by drug treatment. This approach provides new access to proteomic information on how cell types respond to and change the extracellular microenvironment and provides a holistic understanding of both the cell and extracellular response.
Collapse
Affiliation(s)
| | | | - Rachel Biggs
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Najmeh Eskandari
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Davide Delisi
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Amy D. Bradshaw
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Michael Ostrowski
- Hollings Cancer Center, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
5
|
Vats M, Cillero-Pastor B, Cuypers E, Heeren RMA. Mass spectrometry imaging in plants, microbes, and food: a review. Analyst 2024; 149:4553-4582. [PMID: 39196541 DOI: 10.1039/d4an00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Plant health, which affects the nutritional quality and safety of derivative food products, is influenced by symbiotic interactions with microorganisms. These interactions influence the local molecular profile at the tissue level. Therefore, studying the distribution of molecules within plants, microbes, and plant-based food is crucial to assess plant health, ensure the safety and quality of the agricultural products that become part of our food supply, and plan agricultural management practices. Within this framework, the molecular distribution within plant-based samples can be visualized with mass spectrometry imaging (MSI). This review describes key MSI methodologies, highlighting the role they play in unraveling the localization of metabolites, lipids, proteins, pigments, and elemental components across plants, microbes, and food products. Furthermore, investigations that involve multimodal molecular imaging approaches combining MSI with other imaging techniques are described. The advantages and limitations of the different MSI techniques that influence their applicability in diverse agro-food studies are described to enable informed choices for tailored analyses. For example, some MSI technologies involve meticulous sample preparation while others compromise spatial resolution to gain throughput. Key parameters such as sensitivity, ionization bias and fragmentation, reference database and compound class specificity are described and discussed in this review. With the ongoing refinements in instrumentation, data analysis, and integration of complementary techniques, MSI deepens our insight into the molecular biology of the agricultural ecosystem. This in turn empowers the quest for sustainable and productive agricultural practices.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Venter AR. Protein analysis by desorption electrospray ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39056172 DOI: 10.1002/mas.21900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.
Collapse
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
7
|
Zickuhr GM, Um IH, Laird A, Harrison DJ, Dickson AL. DESI-MSI-guided exploration of metabolic-phenotypic relationships reveals a correlation between PI 38:3 and proliferating cells in clear cell renal cell carcinoma via single-section co-registration of multimodal imaging. Anal Bioanal Chem 2024; 416:4015-4028. [PMID: 38780655 PMCID: PMC11249708 DOI: 10.1007/s00216-024-05339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
A workflow has been evaluated that utilizes a single tissue section to obtain spatially co-registered, molecular, and phenotypical information suitable for AI-enabled image analysis. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used to obtain molecular information followed by conventional histological staining and immunolabelling. The impact of varying DESI-MSI conditions (e.g., heated transfer line (HTL) temperature, scan rate, acquisition time) on the detection of small molecules and lipids as well as on tissue integrity crucial for integration into typical clinical pathology workflows was assessed in human kidney. Increasing the heated transfer line temperature from 150 to 450 °C resulted in a 1.8-fold enhancement in lipid signal at a scan rate of 10 scans/s, while preserving histological features. Moreover, increasing the acquisition speed to 30 scans/s yielded superior lipid signal when compared to 10 scans/s at 150 °C. Tissue morphology and protein epitopes remained intact allowing full histological assessment and further multiplex phenotyping by immunofluorescence (mIF) and immunohistochemistry (mIHC) of the same section. The successful integration of the workflow incorporating DESI-MSI, H&E, and immunolabelling on a single tissue section revealed an accumulation of ascorbic acid in regions of focal chronic inflammatory cell infiltrate within non-cancerous kidney tissue. Additionally, a strong positive correlation between PI 38:3 and proliferating cells was observed in clear cell renal cell carcinoma (ccRCC) showing the utility of this approach in uncovering molecular associations in disease pathology.
Collapse
Affiliation(s)
- Greice M Zickuhr
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Alexander Laird
- Department of Urology, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
- NuCana Plc, Lochside Way, Edinburgh, EH12 9DT, UK
| | - Alison L Dickson
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
- NuCana Plc, Lochside Way, Edinburgh, EH12 9DT, UK.
| |
Collapse
|
8
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Bottomley H, Phillips J, Hart P. Improved Detection of Tryptic Peptides from Tissue Sections Using Desorption Electrospray Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:922-934. [PMID: 38602416 PMCID: PMC11066963 DOI: 10.1021/jasms.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
DESI-MSI is an ambient ionization technique used frequently for the detection of lipids, small molecules, and drug targets. Until recently, DESI had only limited use for the detection of proteins and peptides due to the setup and needs around deconvolution of data resulting in a small number of species being detected at lower spatial resolution. There are known differences in the ion species detected using DESI and MALDI for nonpeptide molecules, and here, we identify that this extends to proteomic species. DESI MS images were obtained for tissue sections of mouse and rat brain using a precommercial heated inlet (approximately 450 °C) to the mass spectrometer. Ion mobility separation resolved spectral overlap of peptide ions and significantly improved the detection of multiply charged species. The images acquired were of pixel size 100 μm (rat brain) and 50 μm (mouse brain), respectively. Observed tryptic peptides were filtered against proteomic target lists, generated by LC-MS, enabling tentative protein assignment for each peptide ion image. Precise localizations of peptide ions identified by DESI and MALDI were found to be comparable. Some spatially localized peptides ions were observed in DESI that were not found in the MALDI replicates, typically, multiply charged species with a low mass to charge ratio. This method demonstrates the potential of DESI-MSI to detect large numbers of tryptic peptides from tissue sections with enhanced spatial resolution when compared to previous DESI-MSI studies.
Collapse
Affiliation(s)
- Heather Bottomley
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Jonathan Phillips
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Philippa Hart
- Medicines
Discovery Catapult, Alderley Park, Block 35, Mereside, Macclesfield SK10 4ZF, U.K.
| |
Collapse
|
10
|
Jensen M, Liu S, Stepula E, Martella D, Birjandi AA, Farrell‐Dillon K, Chan KLA, Parsons M, Chiappini C, Chapple SJ, Mann GE, Vercauteren T, Abbate V, Bergholt MS. Opto-Lipidomics of Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302962. [PMID: 38145965 PMCID: PMC11005704 DOI: 10.1002/advs.202302962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Lipid metabolism and signaling play pivotal functions in biology and disease development. Despite this, currently available optical techniques are limited in their ability to directly visualize the lipidome in tissues. In this study, opto-lipidomics, a new approach to optical molecular tissue imaging is introduced. The capability of vibrational Raman spectroscopy is expanded to identify individual lipids in complex tissue matrices through correlation with desorption electrospray ionization (DESI) - mass spectrometry (MS) imaging in an integrated instrument. A computational pipeline of inter-modality analysis is established to infer lipidomic information from optical vibrational spectra. Opto-lipidomic imaging of transient cerebral ischemia-reperfusion injury in a murine model of ischemic stroke demonstrates the visualization and identification of lipids in disease with high molecular specificity using Raman scattered light. Furthermore, opto-lipidomics in a handheld fiber-optic Raman probe is deployed and demonstrates real-time classification of bulk brain tissues based on specific lipid abundances. Opto-lipidomics opens a host of new opportunities to study lipid biomarkers for diagnostics, prognostics, and novel therapeutic targets.
Collapse
Affiliation(s)
- Magnus Jensen
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Shiyue Liu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
| | - Elzbieta Stepula
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Davide Martella
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Anahid A. Birjandi
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Keith Farrell‐Dillon
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | | | - Maddy Parsons
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonSE1 1ULUK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Sarah J. Chapple
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Giovanni E. Mann
- Institute of Pharmaceutical ScienceKing's College LondonLondonSE1 9NHUK
- King's British Heart Foundation Centre of Research ExcellenceSchool of Cardiovascular and Metabolic Medicine & SciencesFaculty of Life Sciences & MedicineKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonWC2R 2LSUK
| | - Vincenzo Abbate
- Department of AnalyticalEnvironmental and Forensic SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Mads S. Bergholt
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
11
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Macdonald JK, Mehta AS, Drake RR, Angel PM. Molecular analysis of the extracellular microenvironment: from form to function. FEBS Lett 2024; 598:602-620. [PMID: 38509768 PMCID: PMC11049795 DOI: 10.1002/1873-3468.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) proteome represents an important component of the tissue microenvironment that controls chemical flux and induces cell signaling through encoded structure. The analysis of the ECM represents an analytical challenge through high levels of post-translational modifications, protease-resistant structures, and crosslinked, insoluble proteins. This review provides a comprehensive overview of the analytical challenges involved in addressing the complexities of spatially profiling the extracellular matrix proteome. A synopsis of the process of synthesizing the ECM structure, detailing inherent chemical complexity, is included to present the scope of the analytical challenge. Current chromatographic and spatial techniques addressing these challenges are detailed. Capabilities for multimodal multiplexing with cellular populations are discussed with a perspective on developing a holistic view of disease processes that includes both the cellular and extracellular microenvironment.
Collapse
Affiliation(s)
- Jade K Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
13
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
14
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Steven RT, Burton A, Taylor AJ, Robinson KN, Dexter A, Nikula CJ, Bunch J. Evaluation of Inlet Temperature with Three Sprayer Designs for Desorption Electrospray Ionization Mass Spectrometry Tissue Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:224-233. [PMID: 38181191 DOI: 10.1021/jasms.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Mass spectrometry imaging (MSI) allows for the spatially resolved detection of endogenous and exogenous molecules and atoms in biological samples, typically prepared as thin tissue sections. Desorption electrospray ionization (DESI) is one of the most commonly utilized MSI modalities in preclinical research. DESI ion source technology is still rapidly evolving, with new sprayer designs and heated inlet capillaries having recently been incorporated in commercially available systems. In this study, three iterations of DESI sprayer designs are evaluated: (1) the first, and until recently only, commercially available Waters sprayer; (2) a developmental desorption electro-flow focusing ionization (DEFFI)-type sprayer; and (3) a prototype of the newly released Waters commercial sprayer. A heated inlet capillary is also employed, allowing for controlled inlet temperatures up to 500 °C. These three sprayers are evaluated by comparative tissue imaging analyses of murine testes across this temperature range. Single ion intensity versus temperature trends are evaluated as exemplar cases for putatively identified species of interest, such as lactate and glutamine. A range of trends are observed, where intensities follow either increasing, decreasing, bell-shaped, or other trends with temperature. Data for all sprayers show approximately similar trends for the ions studied, with the commercial prototype sprayer (sprayer version 3) matching or outperforming the other sprayers for the ions investigated. Finally, the mass spectra acquired using sprayer version 3 are evaluated by uniform manifold approximation and projection (UMAP) and k-means clustering. This approach is shown to provide valuable insight that is complementary to the presented univariate evaluation for reviewing the parameter space in this study. Full spectral temperature optimization data are provided as supporting data to enable other researchers to design experiments that are optimal for specific ions.
Collapse
Affiliation(s)
- Rory T Steven
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Amy Burton
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Adam J Taylor
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Alex Dexter
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Josephine Bunch
- National Physical Laboratory Teddington TW11 0LW, U.K
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
16
|
Meng Y, Chiou AS, Aasi SZ, See NA, Song X, Zare RN. Noninvasive Detection of Skin Cancer by Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging. Anal Chem 2024; 96:28-32. [PMID: 38155587 DOI: 10.1021/acs.analchem.3c04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
We report a technique for the noninvasive detection of skin cancer by imprint desorption electrospray ionization mass spectrometry imaging (DESI-MSI) using a transfer agent that is pressed against the tissue of interest. By noninvasively pressing a tape strip against human skin, metabolites, fatty acids, and lipids on the skin surface are transferred to the tape with little spatial distortion. Running DESI-MSI on the tape strip provides chemical images of the molecules on the skin surface, which are valuable for distinguishing cancer from healthy skin. Chemical components of the tissue imprint on the tape strip and the original basal cell carcinoma (BCC) section from the mass spectra show high consistency. By comparing MS images (about 150-μm resolution) of same molecules from the tape strip and from the BCC section, we confirm that chemical patterns are successfully transferred to the tape stripe. We also used the technique to distinguish cherry angiomas from normal human skin by comparing the molecular patterns from a tape strip. These results demonstrate the potential of the imprint DESI-MSI technique for the noninvasive detection of skin cancers as well as other skin diseases before and during clinical surgery.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Albert S Chiou
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Niki A See
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Daphnis T, Tomasetti B, Delmez V, Vanvarenberg K, Préat V, Thieffry C, Henriet P, Dupont-Gillain C, Delcorte A. Improvement of Lipid Detection in Mouse Brain and Human Uterine Tissue Sections Using In Situ Matrix Enhanced Secondary Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2259-2268. [PMID: 37712225 DOI: 10.1021/jasms.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.
Collapse
Affiliation(s)
- Thomas Daphnis
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Tomasetti
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Vincent Delmez
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Charlotte Thieffry
- Institut De Duve, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Patrick Henriet
- Institut De Duve, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Jiang LX, Hernly E, Hu H, Hilger RT, Neuweger H, Yang M, Laskin J. Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion Mobility Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1798-1804. [PMID: 37463098 PMCID: PMC10513741 DOI: 10.1021/jasms.3c00199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Untargeted separation of isomeric and isobaric species in mass spectrometry imaging (MSI) is challenging. The combination of ion mobility spectrometry (IMS) with MSI has emerged as an effective strategy for differentiating isomeric and isobaric species, which substantially enhances the molecular coverage and specificity of MSI experiments. In this study, we have implemented nanospray desorption electrospray ionization (nano-DESI) MSI on a trapped ion mobility spectrometry (TIMS) mass spectrometer. A new nano-DESI source was constructed, and a specially designed inlet extension was fabricated to accommodate the new source. The nano-DESI-TIMS-MSI platform was evaluated by imaging mouse brain tissue sections. We achieved high ion mobility resolution by utilizing three narrow mobility scan windows that covered the majority of the lipid molecules. Notably, the mobility resolution reaching up to 300 in this study is much higher than the resolution obtained in our previous study using drift tube IMS. High-resolution TIMS successfully separated lipid isomers and isobars, revealing their distinct localizations in tissue samples. Our results further demonstrate the power of high-mobility-resolution IMS for unraveling the complexity of biomolecular mixtures analyzed in MSI experiments.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Ryan T. Hilger
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | | | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| |
Collapse
|
19
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
20
|
Yang M, Unsihuay D, Hu H, Meke FN, Qu Z, Zhang ZY, Laskin J. Nano-DESI Mass Spectrometry Imaging of Proteoforms in Biological Tissues with High Spatial Resolution. Anal Chem 2023; 95:5214-5222. [PMID: 36917636 PMCID: PMC11330692 DOI: 10.1021/acs.analchem.2c04795] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis. In this study, we demonstrate proteoform mapping in biological tissues with a spatial resolution down to 7 μm using nano-DESI MSI. A substantial decrease in protein signals observed in high-spatial-resolution MSI makes these experiments challenging. We have enhanced the sensitivity of nano-DESI MSI experiments by optimizing the design of the capillary-based probe and the thickness of the tissue section. In addition, we demonstrate that oversampling may be used to further improve spatial resolution at little or no expense to sensitivity. These developments represent a new step in MSI-based spatial proteomics, which complements targeted imaging modalities widely used for studying biological systems.
Collapse
Affiliation(s)
- Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
22
|
Surface-sampling mass spectrometry to study proteins and protein complexes. Essays Biochem 2023; 67:229-241. [PMID: 36748325 PMCID: PMC10070487 DOI: 10.1042/ebc20220191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
This review aims to summarise the current capabilities of surface mass spectrometry (MS) approaches that offer intact protein analysis, and that of non-covalent complexes. Protein analysis is largely achieved via matrix-assisted laser desorption/ionisation (MALDI), which is in itself a surface analysis approach or solvent-based electrospray ionisation (ESI). Several surface sampling approaches have been developed based on ESI, and those that have been used for intact protein analysis will be discussed below. The extent of protein coverage, top-down elucidation, and probing of protein structure for native proteins and non-covalent complexes will be discussed for each approach. Strategies for improving protein analysis, ranging from sample preparation, and sampling methods to instrument modifications and the inclusion of ion mobility separation in the workflow will also be discussed. The relative benefits and drawbacks of each approach will be summarised, providing an overview of current capabilities.
Collapse
|
23
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
24
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Lin M, Blevins MS, Sans M, Brodbelt JS, Eberlin LS. Deeper Understanding of Solvent-Based Ambient Ionization Mass Spectrometry: Are Molecular Profiles Primarily Dictated by Extraction Mechanisms? Anal Chem 2022; 94:14734-14744. [PMID: 36228313 DOI: 10.1021/acs.analchem.2c03360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvent-based ambient ionization mass spectrometry (MS) techniques provide a powerful approach for direct chemical analysis and molecular profiling of biological tissues. While molecular profiling of tissues has been widely used for disease diagnosis, little is understood about how the interplay among solvent properties, matrix effects, and ion suppression can influence the detection of biological molecules. Here, we perform a systematic investigation of the extraction processes of lipids using an ambient ionization droplet microsampling platform to investigate how the physicochemical properties of the solvent systems and extraction time influence molecular extraction and detection. Direct molecular profiling and quantitative liquid chromatography-mass spectrometry (LC-MS) of discrete solvent droplets after surface sampling were investigated to provide insights into extraction and ionization mechanisms. The results of this study suggest that intermolecular interactions such as hydrogen bonding play a major role in extraction and detection of lipids using solvent-based ambient ionization techniques. In addition, extraction time was observed to impact the molecular profiles obtained, suggesting optimization of this parameter can be performed to favor detection of specific analytes.
Collapse
Affiliation(s)
- Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Surgery, Baylor College of Medicine, Houston, Texas77030, United States
| |
Collapse
|
26
|
Bowman AP, Sawicki J, Talaty NN, Buck WR, Yang J, Wagner DS. Evaluation of Quantitative Platforms for Single Target Mass Spectrometry Imaging. Pharmaceuticals (Basel) 2022; 15:ph15101180. [PMID: 36297291 PMCID: PMC9609477 DOI: 10.3390/ph15101180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Imaging of pharmaceutical compounds in tissue is an increasingly important subsection of Mass Spectrometry Imaging (MSI). Identifying proper target engagement requires MS platforms with high sensitivity and spatial resolution. Three prominent categories of drugs are small molecule drugs, antibody-drug conjugate payloads, and protein degraders. (2) We tested six common MSI platforms for their limit of detection (LoD) on a representative compound for each category: a Matrix-Assisted Laser Desorption/Ionization (MALDI) Fourier Transform Ion Cyclotron, a MALDI-2 Time-of-Flight (ToF), a MALDI-2 Trapped Ion Mobility Spectrometry ToF, a Desorption Electrospray Ionization Orbitrap, and 2 Atmospheric Pressure-MALDI Triple Quadrupoles. Samples were homogenized tissue mimetic models of rat liver spiked with known concentrations of analytes. (3) We found that the AP-MALDI-QQQ platform outperformed all 4 competing platforms by a minimum of 2- to 52-fold increase in LoD for representative compounds from each category of pharmaceutical. (4) AP-MALDI-QQQ platforms are effective, cost-efficient mass spectrometers for the identification of targeted analytes of interest.
Collapse
|
27
|
Zemaitis KJ, Veličković D, Kew W, Fort KL, Reinhardt-Szyba M, Pamreddy A, Ding Y, Kaushik D, Sharma K, Makarov AA, Zhou M, Paša-Tolić L. Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection. Anal Chem 2022; 94:12604-12613. [PMID: 36067026 PMCID: PMC10064997 DOI: 10.1021/acs.analchem.2c01034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Core histones including H2A, H2B, H3, and H4 are key modulators of cellular repair, transcription, and replication within eukaryotic cells, playing vital roles in the pathogenesis of disease and cellular responses to environmental stimuli. Traditional mass spectrometry (MS)-based bottom-up and top-down proteomics allows for the comprehensive identification of proteins and of post-translational modification (PTM) harboring proteoforms. However, these methodologies have difficulties preserving near-cellular spatial distributions because they typically require laser capture microdissection (LCM) and advanced sample preparation techniques. Herein, we coupled a matrix-assisted laser desorption/ionization (MALDI) source with a Thermo Scientific Q Exactive HF Orbitrap MS upgraded with ultrahigh mass range (UHMR) boards for the first demonstration of complementary high-resolution accurate mass (HR/AM) measurements of proteoforms up to 16.5 kDa directly from tissues using this benchtop mass spectrometer. The platform achieved isotopic resolution throughout the detected mass range, providing confident assignments of proteoforms with low ppm mass error and a considerable increase in duty cycle over other Fourier transform mass analyzers. Proteoform mapping of core histones was demonstrated on sections of human kidney at near-cellular spatial resolution, with several key distributions of histone and other proteoforms noted within both healthy biopsy and a section from a renal cell carcinoma (RCC) containing nephrectomy. The use of MALDI-MS imaging (MSI) for proteoform mapping demonstrates several steps toward high-throughput accurate identification of proteoforms and provides a new tool for mapping biomolecule distributions throughout tissue sections in extended mass ranges.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | | | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Yanli Ding
- Department of Pathology and Laboratory Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Dharam Kaushik
- Department of Urology, University of Texas Health, San Antonio, Texas 78284, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States.,Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
28
|
Illes‐Toth E, Hale OJ, Hughes JW, Strittmatter N, Rose J, Clayton B, Sargeant R, Jones S, Dannhorn A, Goodwin RJA, Cooper HJ. Mass Spectrometry Detection and Imaging of a Non‐Covalent Protein–Drug Complex in Tissue from Orally Dosed Rats. Angew Chem Int Ed Engl 2022; 61:e202202075. [PMID: 35830332 PMCID: PMC9542108 DOI: 10.1002/anie.202202075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/10/2022]
Abstract
Here, we demonstrate detection by mass spectrometry of an intact protein–drug complex directly from liver tissue from rats that had been orally dosed with the drug. The protein–drug complex comprised fatty acid binding protein 1, FABP1, non‐covalently bound to the small molecule therapeutic bezafibrate. Moreover, we demonstrate spatial mapping of the [FABP1+bezafibrate] complex across a thin section of liver by targeted mass spectrometry imaging. This work is the first demonstration of in situ mass spectrometry analysis of a non‐covalent protein–drug complex formed in vivo and has implications for early stage drug discovery by providing a route to target‐drug characterization directly from the physiological environment.
Collapse
Affiliation(s)
- Eva Illes‐Toth
- School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Oliver J. Hale
- School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - James W. Hughes
- School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Nicole Strittmatter
- Imaging & Data Analytics Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Jonathan Rose
- Animal Sciences & Technologies Clinical Pharmacology & Safety Sciences, AstraZeneca Babraham Research Campus Babraham Cambridge, CB22 3AT UK
| | - Ben Clayton
- Animal Sciences & Technologies Clinical Pharmacology & Safety Sciences, AstraZeneca Babraham Research Campus Babraham Cambridge, CB22 3AT UK
| | - Rebecca Sargeant
- Imaging & Data Analytics Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Stewart Jones
- Imaging & Data Analytics Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Andreas Dannhorn
- Imaging & Data Analytics Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Richard J. A. Goodwin
- Imaging & Data Analytics Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Helen J. Cooper
- School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
29
|
Illes‐Toth E, Hale OJ, Hughes JW, Strittmatter N, Rose J, Clayton B, Sargeant R, Jones S, Dannhorn A, Goodwin RJA, Cooper HJ. Mass Spectrometry Detection and Imaging of a Non-Covalent Protein-Drug Complex in Tissue from Orally Dosed Rats. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202202075. [PMID: 38505542 PMCID: PMC10946869 DOI: 10.1002/ange.202202075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/07/2022]
Abstract
Here, we demonstrate detection by mass spectrometry of an intact protein-drug complex directly from liver tissue from rats that had been orally dosed with the drug. The protein-drug complex comprised fatty acid binding protein 1, FABP1, non-covalently bound to the small molecule therapeutic bezafibrate. Moreover, we demonstrate spatial mapping of the [FABP1+bezafibrate] complex across a thin section of liver by targeted mass spectrometry imaging. This work is the first demonstration of in situ mass spectrometry analysis of a non-covalent protein-drug complex formed in vivo and has implications for early stage drug discovery by providing a route to target-drug characterization directly from the physiological environment.
Collapse
Affiliation(s)
- Eva Illes‐Toth
- School of BiosciencesUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
| | - Oliver J. Hale
- School of BiosciencesUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
| | - James W. Hughes
- School of BiosciencesUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
| | - Nicole Strittmatter
- Imaging & Data AnalyticsClinical Pharmacology & Safety SciencesBiopharmaceuticals R&D, AstraZenecaCambridgeCB4 0WGUK
| | - Jonathan Rose
- Animal Sciences & TechnologiesClinical Pharmacology & Safety Sciences, AstraZenecaBabraham Research CampusBabrahamCambridge, CB22 3ATUK
| | - Ben Clayton
- Animal Sciences & TechnologiesClinical Pharmacology & Safety Sciences, AstraZenecaBabraham Research CampusBabrahamCambridge, CB22 3ATUK
| | - Rebecca Sargeant
- Imaging & Data AnalyticsClinical Pharmacology & Safety SciencesBiopharmaceuticals R&D, AstraZenecaCambridgeCB4 0WGUK
| | - Stewart Jones
- Imaging & Data AnalyticsClinical Pharmacology & Safety SciencesBiopharmaceuticals R&D, AstraZenecaCambridgeCB4 0WGUK
| | - Andreas Dannhorn
- Imaging & Data AnalyticsClinical Pharmacology & Safety SciencesBiopharmaceuticals R&D, AstraZenecaCambridgeCB4 0WGUK
| | - Richard J. A. Goodwin
- Imaging & Data AnalyticsClinical Pharmacology & Safety SciencesBiopharmaceuticals R&D, AstraZenecaCambridgeCB4 0WGUK
| | - Helen J. Cooper
- School of BiosciencesUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
| |
Collapse
|
30
|
Imaging Mass Spectrometry Reveals Complex Lipid Distributions Across Staphylococcus aureus Biofilm Layers. J Mass Spectrom Adv Clin Lab 2022; 26:36-46. [PMID: 36388058 PMCID: PMC9641601 DOI: 10.1016/j.jmsacl.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Although Staphylococcus aureus is the leading cause of biofilm-related infections, the lipidomic distributions within these biofilms is poorly understood. Here, lipidomic mapping of S. aureus biofilm cross-sections was performed to investigate heterogeneity between horizontal biofilm layers. Methods S. aureus biofilms were grown statically, embedded in a mixture of carboxymethylcellulose/gelatin, and prepared for downstream matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS). Trapped ion mobility spectrometry (TIMS) was also applied prior to mass analysis. Results Implementation of TIMS led to a ∼ threefold increase in the number of lipid species detected. Washing biofilm samples with ammonium formate (150 mM) increased signal intensity for some bacterial lipids by as much as tenfold, with minimal disruption of the biofilm structure. MALDI TIMS IMS revealed that most lipids localize primarily to a single biofilm layer, and species from the same lipid class such as cardiolipins CL(57:0) - CL(66:0) display starkly different localizations, exhibiting between 1.5 and 6.3-fold intensity differences between layers (n = 3, p < 0.03). No horizontal layers were observed within biofilms grown anaerobically, and lipids were distributed homogenously. Conclusions High spatial resolution analysis of S. aureus biofilm cross-sections by MALDI TIMS IMS revealed stark lipidomic heterogeneity between horizontal S. aureus biofilm layers demonstrating that each layer was molecularly distinct. Finally, this workflow uncovered an absence of layers in biofilms grown under anaerobic conditions, possibly indicating that oxygen contributes to the observed heterogeneity under aerobic conditions. Future applications of this workflow to study spatially localized molecular responses to antimicrobials could provide new therapeutic strategies.
Collapse
|
31
|
Holm NB, Deryabina M, Knudsen CB, Janfelt C. Tissue distribution and metabolic profiling of cyclosporine (CsA) in mouse and rat investigated by DESI and MALDI mass spectrometry imaging (MSI) of whole-body and single organ cryo-sections. Anal Bioanal Chem 2022; 414:7167-7177. [PMID: 35953725 DOI: 10.1007/s00216-022-04269-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Therapeutic peptides are a fast-growing class of pharmaceuticals. Like small molecules, the costs associated with their discovery and development are significant. In addition, since the preclinical data guides first-in-human studies, there is a need for analytical techniques that accelerate and improve our understanding of the absorption, distribution, metabolism, and excretion (ADME) characteristics of early drug candidates. Mass spectrometry imaging (MSI), which can be used to visualize drug distribution in intact tissue, has been extensively used to study small molecule drugs, but only applied to a limited extent to larger molecules, such as peptides, after dosing. Herein, we use MSI to obtain spatial information on the distribution and metabolism of a peptide drug. The immunosuppressant cyclosporine (CsA), a cyclic undecapeptide, was used as a-proof-of-concept peptide and investigated by desorption electrospray ionization (DESI) MSI. Calibration curves were made based on a spiked tissue homogenate model. Different washing protocols were tested to improve sensitivity, but CsA, being a quite lipophilic peptide, was found not to benefit from tissue washing. The distribution of CsA and its metabolites were mapped in whole-body mouse sections and within rat organs. Whole-body DESI-MSI studies in mice showed widespread distribution of CsA with highest abundance in organs like the pancreas and liver. After 24 h, hydroxy and dihydroxy metabolites of CsA were detected predominantly in the intestines, which were largely devoid of CsA. In addition to the DESI-MSI experiments, MALDI-MSI was also conducted on rat jejunum at higher spatial resolution, revealing the morphology of the jejenum at greater detail; however, DESI provided similar results for drug and metabolite distribution in rat jejunum at apparent slightly better sensitivity. Given its label-free nature, MSI could provide valuable ADME insight, especially for candidates in the early-stage pipeline before radiolabeling.
Collapse
Affiliation(s)
- Niels Bjerre Holm
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
- Department of Pharmacy, Copenhagen University, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Maria Deryabina
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
| | - Carsten Boye Knudsen
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Copenhagen University, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
32
|
Wu V, Tillner J, Jones E, McKenzie JS, Gurung D, Mroz A, Poynter L, Simon D, Grau C, Altafaj X, Dumas ME, Gilmore I, Bunch J, Takats Z. High Resolution Ambient MS Imaging of Biological Samples by Desorption Electro-Flow Focussing Ionization. Anal Chem 2022; 94:10035-10044. [PMID: 35786855 PMCID: PMC9310024 DOI: 10.1021/acs.analchem.2c00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we examine the suitability of desorption electro-flow focusing ionization (DEFFI) for mass spectrometry imaging (MSI) of biological tissue. We also compare the performance of desorption electrospray ionization (DESI) with and without the flow focusing setup. The main potential advantages of applying the flow focusing mechanism in DESI is its rotationally symmetric electrospray jet, higher intensity, more controllable parameters, and better portability due to the robustness of the sprayer. The parameters for DEFFI have therefore been thoroughly optimized, primarily for spatial resolution but also for intensity. Once the parameters have been optimized, DEFFI produces similar images to the existing DESI. MS images for mouse brain samples, acquired at a nominal pixel size of 50 μm, are comparable for both DESI setups, albeit the new sprayer design yields better sensitivity. Furthermore, the two methods are compared with regard to spectral intensity as well as the area of the desorbed crater on rhodamine-coated slides. Overall, the implementation of a flow focusing mechanism in DESI is shown to be highly suitable for imaging biological tissue and has potential to overcome some of the shortcomings experienced with the current geometrical design of DESI.
Collapse
Affiliation(s)
- Vincen Wu
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Jocelyn Tillner
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom,NiCE-MSI, National Physical Laboratory
(NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Emrys Jones
- Waters
Corporation, Altrincham
Road, Wilmslow SK9 4AX, United Kingdom
| | - James S. McKenzie
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Dipa Gurung
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Anna Mroz
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Liam Poynter
- Department
of Surgery & Cancer, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, Unite Kingdom
| | - Daniel Simon
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Cristina Grau
- Neurometabolic
Unit, Department of Neurology, Hospital
Sant Joan de Déu, 08950 Barcelona, Spain
| | - Xavier Altafaj
- Neurophysiology
Laboratory, Department of Biomedicine, Faculty of Medicine and Health
Sciences, Institute of Neurosciences, University
of Barcelona, Barcelona 08036, Spain
| | - Marc-Emmanuel Dumas
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Ian Gilmore
- NiCE-MSI, National Physical Laboratory
(NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Josephine Bunch
- NiCE-MSI, National Physical Laboratory
(NPL), Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom,Biological
Mass Spectrometry, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, United
Kingdom
| | - Zoltan Takats
- Department
of Digestion, Metabolism and Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom,Biological
Mass Spectrometry, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, United
Kingdom,
| |
Collapse
|
33
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
34
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
35
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
36
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
37
|
Hale O, Hughes JW, Sisley EK, Cooper HJ. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Anal Chem 2022; 94:5608-5614. [PMID: 35358391 PMCID: PMC9008691 DOI: 10.1021/acs.analchem.1c05353] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Untargeted label-free interrogation of proteins in their functional form directly from their physiological environment promises to transform life sciences research by providing unprecedented insight into their transient interactions with other biomolecules and xenobiotics. Native ambient mass spectrometry (NAMS) shows great potential for the structural analysis of endogenous protein assemblies directly from tissues; however, to date, this has been limited to assemblies of low molecular weight (<20 kDa) or very high abundance (hemoglobin tetramer in blood vessels, RidA homotrimer in kidney cortex tissues). The present work constitutes a step change for NAMS of protein assemblies: we demonstrate the detection and identification of a range of intact endogenous protein assemblies with various stoichiometries (dimer, trimer, and tetramer) from a range of tissue types (brain, kidney, liver) by the use of multiple NAMS techniques. Crucially, we demonstrate a greater than twofold increase in accessible molecular weight (up to 145 kDa). In addition, spatial distributions of protein assemblies up to 94 kDa were mapped in brain and kidney by nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging.
Collapse
Affiliation(s)
- Oliver
J. Hale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - James W. Hughes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Emma K. Sisley
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
38
|
Huang L, Nie L, Dai Z, Dong J, Jia X, Yang X, Yao L, Ma SC. The application of mass spectrometry imaging in traditional Chinese medicine: a review. Chin Med 2022; 17:35. [PMID: 35248086 PMCID: PMC8898510 DOI: 10.1186/s13020-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2025] Open
Abstract
AbstractMass spectrometry imaging is a frontier technique which connects classical mass spectrometry with ion imaging. Various types of chemicals could be visualized in their native tissues using mass spectrometry imaging. Up to now, the most commonly applied mass spectrometry imaging techniques are matrix assisted laser desorption ionization mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging and secondary ion mass spectrometry imaging. This review gives an introduction to the principles, development and applications of commonly applied mass spectrometry imaging techniques, and then illustrates the application of mass spectrometry imaging in the investigation of traditional Chinese medicine. Recently, mass spectrometry imaging has been adopted to explore the spatial distribution of endogenous metabolites in traditional Chinese medicine. Data collected from mass spectrometry imaging can be further utilized to search for marker components of traditional Chinese medicine, discover new compounds from traditional herbs, and differentiate between medicinal plants that are similar in botanical features. Moreover, mass spectrometry imaging also plays a role in revealing the pharmacological and toxicological mechanisms of traditional Chinese medicine.
Collapse
|
39
|
Hong Y, Birse N, Quinn B, Montgomery H, Wu D, Rosas da Silva G, van Ruth SM, Elliott CT. Identification of milk from different animal and plant sources by desorption electrospray ionisation high-resolution mass spectrometry (DESI-MS). NPJ Sci Food 2022; 6:14. [PMID: 35149683 PMCID: PMC8837636 DOI: 10.1038/s41538-022-00129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
This study used desorption electrospray ionisation mass spectrometry (DESI-MS) to analyse and detect and classify biomarkers in five different animal and plant sources of milk for the first time. A range of differences in terms of features was observed in the spectra of cow milk, goat milk, camel milk, soya milk, and oat milk. Chemometric modelling was then used to classify the mass spectra data, enabling unique or significant markers for each milk source to be identified. The classification of different milk sources was achieved with a cross-validation percentage rate of 100% through linear discriminate analysis (LDA) with high sensitivity to adulteration (0.1-5% v/v). The DESI-MS results from the milk samples analysed show the methodology to have high classification accuracy, and in the absence of complex sample clean-up which is often associated with authenticity testing, to be a rapid and efficient approach for milk fraud control.
Collapse
Affiliation(s)
- Yunhe Hong
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.
| | - Nicholas Birse
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Holly Montgomery
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Di Wu
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Gonçalo Rosas da Silva
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University and Research, western, the Netherlands
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
40
|
Ishii Y, Nakamura K, Mitsumoto T, Takimoto N, Namiki M, Takasu S, Ogawa K. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging. Food Chem Toxicol 2022; 161:112851. [DOI: 10.1016/j.fct.2022.112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
41
|
Sisley EK, Hale OJ, Styles IB, Cooper HJ. Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. J Am Chem Soc 2022; 144:2120-2128. [DOI: 10.1021/jacs.1c10032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma K. Sisley
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Oliver J. Hale
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Iain B. Styles
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, U.K
- University of Nottingham, Midlands, NG7 2RD, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| |
Collapse
|
42
|
Peterson TL, Nagy G. Rapid cyclic ion mobility separations of monosaccharide building blocks as a first step toward a high-throughput reaction screening platform for carbohydrate syntheses. RSC Adv 2021; 11:39742-39747. [PMID: 35494126 PMCID: PMC9044565 DOI: 10.1039/d1ra08746k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Herein we present a new high-throughput screening method for carbohydrate syntheses based on cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations. We rapidly resolved the α/β anomers for carbohydrates with varying protecting groups after only 5 m of cIMS-MS separation and also detected their respective unwanted anomeric impurities at levels lower than 2%. All experiments were performed in 1 minute of total acquisition time demonstrating our method's high-throughput nature. Our methodology was also extended to the separation of an isomeric mixtures of two protected disaccharides illustrating its utility beyond only monosaccharides. We envision our presented workflow as a first step toward the development of a high-throughput screening platform for the rapid and sensitive detection of α/β anomeric selectivities and for trace isomeric/isobaric impurities.
Collapse
Affiliation(s)
- Tyler L Peterson
- Department of Chemistry, University of Utah 315 South 1400 East, Room 2020 Salt Lake City Utah 84112 USA
| | - Gabe Nagy
- Department of Chemistry, University of Utah 315 South 1400 East, Room 2020 Salt Lake City Utah 84112 USA
| |
Collapse
|
43
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
44
|
Kohoutek KM, Harrington PDB. Electrospray Ionization Ion Mobility Mass Spectrometry. Crit Rev Anal Chem 2021; 53:483-497. [PMID: 34547945 DOI: 10.1080/10408347.2021.1964938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) is a rapidly progressing analytical technique for the examination of complex compounds in the gas phase. ESI-IMS-MS separates isomers, provides structural information, and quantitatively identifies peptides, lipids, carbohydrates, polymers, and metabolites in biological samples. ESI-IMS-MS has pharmaceutical, environmental, and manufacturing applications quickly characterizing drugs, petroleum products, and metal macromolecules. This review provides the history of ESI-IMS-MS development and applications to date.
Collapse
Affiliation(s)
- Katie M. Kohoutek
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | | |
Collapse
|
45
|
Andrzejewski R, Entwistle A, Giles R, Shvartsburg AA. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td. Anal Chem 2021; 93:12049-12058. [PMID: 34423987 DOI: 10.1021/acs.analchem.1c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception in 1980s, differential or field asymmetric waveform ion mobility spectrometry (FAIMS) has been implemented at or near ambient gas pressure. We recently developed FAIMS at 15-30 Torr with mass spectrometry and utilized it to analyze amino acids, isomeric peptides, and protein conformers. The separations broadly mirrored those at atmospheric pressure, save for larger proteins that (as predicted) exhibited dipole alignment at ambient but not low pressure. Here we reduce the pressure down to 4.7 Torr, allowing normalized electric fields up to 543 Td-double the maximum in prior FAIMS or IMS studies of polyatomic ions. Despite the collisional heating to ∼1000 °C at the waveform peaks, the proteins of size from ubiquitin to albumin survived intact. The dissociation of macromolecules in FAIMS appears governed by the average ion temperature over the waveform cycle, unlike the isomerization controlled by the peak temperature. The global separation trends in this "superhot" regime extend those at moderately low pressures, with distinct conformers and no alignment as theorized. Although the scaling of the compensation voltage with the field fell below cubic at lower fields, the resolving power increased and the resolution of different proteins or charge states substantially improved.
Collapse
Affiliation(s)
- Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, U.K
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
46
|
Zhang J, Sans M, Garza KY, Eberlin LS. MASS SPECTROMETRY TECHNOLOGIES TO ADVANCE CARE FOR CANCER PATIENTS IN CLINICAL AND INTRAOPERATIVE USE. MASS SPECTROMETRY REVIEWS 2021; 40:692-720. [PMID: 33094861 DOI: 10.1002/mas.21664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Developments in mass spectrometry technologies have driven a widespread interest and expanded their use in cancer-related research and clinical applications. In this review, we highlight the developments in mass spectrometry methods and instrumentation applied to direct tissue analysis that have been tailored at enhancing performance in clinical research as well as facilitating translation and implementation of mass spectrometry in clinical settings, with a focus on cancer-related studies. Notable studies demonstrating the capabilities of direct mass spectrometry analysis in biomarker discovery, cancer diagnosis and prognosis, tissue analysis during oncologic surgeries, and other clinically relevant problems that have the potential to substantially advance cancer patient care are discussed. Key challenges that need to be addressed before routine clinical implementation including regulatory efforts are also discussed. Overall, the studies highlighted in this review demonstrate the transformative potential of mass spectrometry technologies to advance clinical research and care for cancer patients. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Kyana Y Garza
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX
| |
Collapse
|
47
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
48
|
Zemaitis KJ, Izydorczak AM, Thompson AC, Wood TD. Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer. Metabolites 2021; 11:metabo11040253. [PMID: 33923908 PMCID: PMC8073082 DOI: 10.3390/metabo11040253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The study of biological specimens by mass spectrometry imaging (MSI) has had a profound influence in the various forms of spatial-omics over the past two decades including applications for the identification of clinical biomarker analysis; the metabolic fingerprinting of disease states; treatment with therapeutics; and the profiling of lipids, peptides and proteins. No singular approach is able to globally map all biomolecular classes simultaneously. This led to the development of many complementary multimodal imaging approaches to solve analytical problems: fusing multiple ionization techniques, imaging microscopy or spectroscopy, or local extractions into robust multimodal imaging methods. However, each fusion typically requires the melding of analytical information from multiple commercial platforms, and the tandem utilization of multiple commercial or third-party software platforms—even in some cases requiring computer coding. Herein, we report the use of matrix-assisted laser desorption/ionization (MALDI) in tandem with desorption electrospray ionization (DESI) imaging in the positive ion mode on a singular commercial orthogonal dual-source Fourier transform ion cyclotron resonance (FT-ICR) instrument for the complementary detection of multiple analyte classes by MSI from tissue. The DESI source was 3D printed and the commercial Bruker Daltonics software suite was used to generate mass spectrometry images in tandem with the commercial MALDI source. This approach allows for the generation of multiple modes of mass spectrometry images without the need for third-party software and a customizable platform for ambient ionization imaging. Highlighted is the streamlined workflow needed to obtain phospholipid profiles, as well as increased depth of coverage of both annotated phospholipid, cardiolipin, and ganglioside species from rat brain with both high spatial and mass resolution.
Collapse
Affiliation(s)
- Kevin J. Zemaitis
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
| | - Alexandra M. Izydorczak
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
| | - Alexis C. Thompson
- Department of Psychology, Park Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Troy D. Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (K.J.Z.); (A.M.I.)
- Correspondence:
| |
Collapse
|
49
|
Dilmetz BA, Lee Y, Condina MR, Briggs M, Young C, Desire CT, Klingler‐Hoffmann M, Hoffmann P. Novel technical developments in mass spectrometry imaging in 2020: A mini review. ANALYTICAL SCIENCE ADVANCES 2021; 2:225-237. [PMID: 38716449 PMCID: PMC10989618 DOI: 10.1002/ansa.202000176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/25/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2024]
Abstract
The applicability of mass spectrometry imaging (MSI) has exponentially increased with the improvement of sample preparation, instrumentation (spatial resolution) and data analysis. The number of MSI publications listed in PubMed continues to grow with 378 published articles in 2020-2021. Initially, MSI was just sensitive enough to identify molecular features correlating with distinct tissue regions, similar to the resolution achieved by visual inspection after standard immunohistochemical staining. Although the spatial resolution was limited compared with other imaging modalities, the molecular intensity mapping added a new exciting capability. Over the past decade, significant improvements in every step of the workflow and most importantly in instrumentation were made, which now enables the molecular analysis at a cellular and even subcellular level. Here, we summarize the latest developments in MSI, with a focus on the latest approaches for tissue-based imaging described in 2020.
Collapse
Affiliation(s)
- Brooke A. Dilmetz
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Yea‐Rin Lee
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
- Clinical and Health Sciences, Health and Biomedical InnovationUniversity of South AustraliaAdelaideAustralia
- Discipline of Orthopaedics and Trauma, Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Mark R. Condina
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Matthew Briggs
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Clifford Young
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | | | | | - Peter Hoffmann
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| |
Collapse
|
50
|
Quantitative mass spectrometry imaging of drugs and metabolites: a multiplatform comparison. Anal Bioanal Chem 2021; 413:2779-2791. [PMID: 33770207 PMCID: PMC8007509 DOI: 10.1007/s00216-021-03210-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/11/2023]
Abstract
Mass spectrometry imaging (MSI) provides insight into the molecular distribution of a broad range of compounds and, therefore, is frequently applied in the pharmaceutical industry. Pharmacokinetic and toxicological studies deploy MSI to localize potential drugs and their metabolites in biological tissues but currently require other analytical tools to quantify these pharmaceutical compounds in the same tissues. Quantitative mass spectrometry imaging (Q-MSI) is a field with challenges due to the high biological variability in samples combined with the limited sample cleanup and separation strategies available prior to MSI. In consequence, more selectivity in MSI instruments is required. This can be provided by multiple reaction monitoring (MRM) which uses specific precursor ion-product ion transitions. This targeted approach is in particular suitable for pharmaceutical compounds because their molecular identity is known prior to analysis. In this work, we compared different analytical platforms to assess the performance of MRM detection compared to other MS instruments/MS modes used in a Q-MSI workflow for two drug candidates (A and B). Limit of detection (LOD), linearity, and precision and accuracy of high and low quality control (QC) samples were compared between MS instruments/modes. MRM mode on a triple quadrupole mass spectrometer (QqQ) provided the best overall performance with the following results for compounds A and B: LOD 35.5 and 2.5 μg/g tissue, R2 0.97 and 0.98 linearity, relative standard deviation QC <13.6%, and 97-112% accuracy. Other MS modes resulted in LOD 6.7-569.4 and 2.6-119.1 μg/g tissue, R2 0.86-0.98 and 0.86-0.98 linearity, relative standard deviation QC < 19.4 and < 37.5%, and 70-356% and 64-398% accuracy for drug candidates A and B, respectively. In addition, we propose an optimized 3D printed mimetic tissue model to increase the overall analytical throughput of our approach for large animal studies. The MRM imaging platform was applied as proof-of-principle for quantitative detection of drug candidates A and B in four dog livers and compared to LC-MS. The Q-MSI concentrations differed <3.5 times with the concentrations observed by LC-MS. Our presented MRM-based Q-MSI approach provides a more selective and high-throughput analytical platform due to MRM specificity combined with an optimized 3D printed mimetic tissue model.
Collapse
|