1
|
Raab SA, Pan H, Woodall DW, Hales DA, Sharon EM, Clemmer DE. Laser-Induced Denaturation of Cytochrome c in Electrospray Droplets. Anal Chem 2025; 97:9151-9158. [PMID: 40257962 DOI: 10.1021/acs.analchem.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Structural transitions of the model system cytochrome c (Cyt c) were monitored by ion mobility spectrometry (IMS) and mass spectrometry (MS) paired with two methods to heat proteins: a variable-temperature electrospray ionization (vT-ESI) source to heat the bulk protein solution and a 10.6 μm CO2 laser to rapidly heat ESI droplets containing the protein. Previous evidence from our group suggests that information about time-dependent protein structural transitions can be accessed by irradiating protein droplets of different sizes. In this paper, a new method to control droplet sizes is introduced where the distance between the ESI emitter and laser path is altered to produce larger or smaller droplets, yielding a simple and robust means of accessing different protein unfolding timescales. Herein, increasing the temperature of a solution of Cyt c in water at pH 4 via vT-ESI (from 27 to 80 °C) shifts the distribution of states from a relatively folded ensemble consisting of low charge states to a distribution of elongated structures that are observed as highly charged species. Rapid heating of ESI droplets (containing Cyt c) with a variable-power CO2 laser yields a similar shift in the mass spectra with increasing laser power. To investigate the conformational changes accessible within the lifetime of the heated droplets, four different tip sizes as well as several different distances between the ESI emitter and laser path are studied. Slight changes in droplet size can greatly alter the response of the protein to the laser field. The maximum observable charge state upon laser heating appears to be limited by the size of the ESI droplet prior to entering the laser field. The dependence of these distributions on droplets sizes leads us to propose that laser-induced denaturation in ESI droplets is stopped before an equilibrium distribution of conformers can be reached─providing a means of kinetically trapping ensembles of states. Therefore, we provide a simple correlation between droplet size, percent protein folded, and appropriate experimental distance to suggest a framework for robust studies of protein denaturation in ESI droplets.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hua Pan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Sharif D, Dewasurendra VK, Sultana MN, Mahmud S, Banerjee C, Rahman M, Li P, Clemmer DE, Johnson MB, Valentine SJ. Accessing Different Protein Conformer Ensembles with Tunable Capillary Vibrating Sharp-Edge Spray Ionization. J Phys Chem B 2025; 129:1626-1639. [PMID: 39878076 PMCID: PMC11808649 DOI: 10.1021/acs.jpcb.4c04842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra. For midvoltage conditions (+200 to +600 V, MV regime), higher charge states (7+ to 12+ ions) are observed. For high-voltage conditions (>+600 V, HV regime), the "nano-electrospray ionization (nESI)-type distribution" is achieved in which the 6+ and 5+ species are observed as the dominant ions. Analysis of these results suggests that different pathways to progeny nanodroplet production result in the observed ions. For the LV regime, aerodynamic breakup leads to low charge progeny droplets that are selective for the native solution conformation ensemble of ubiquitin (minus multimeric species). In the MV regime, the large droplets persist for longer periods of time, leading to droplet heating and a shift in the conformation ensemble to partially unfolded species. In the HV regime, droplets access progeny nanodroplets faster, leading to native conformation ensemble sampling as indicated by the observed nESI-type CSD. The notable observation of limited multimer formation and adduct ion formation in the LV regime is hypothesized to result from droplet aero breakup resulting in protein and charge carrier partitioning in sampled progeny droplets. The tunable droplet charging afforded by cVSSI presents opportunities to study the effects of the droplet charge, droplet size, and mass spectrometer inlet temperature on the conformer ensemble sampled by the mass spectrometer. Additionally, the approach may provide a tool for rapid comparison of protein stabilities.
Collapse
Affiliation(s)
- Daud Sharif
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Vikum K. Dewasurendra
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mst Nigar Sultana
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sultan Mahmud
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chandrima Banerjee
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Mohammad Rahman
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Matthew B. Johnson
- Department
of Physics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
3
|
Allen NR, Jeet K, Ogunsanya T, Ferraro I, Fernandes N, Li H, Webster T, Mason C, Li A. Ionization Characteristics of Glycan Homologues in Various Modes of Electrospray. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:346-354. [PMID: 39714273 DOI: 10.1021/jasms.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fluorescence labeled glycan homologous mixtures were quantified using fluorescence and then used to evaluate ionization performances in electrospray ionization at micro, nano, and femto flow modes. nanoESI produced higher (2+ and 3+) charged ions adducted with sodium and calcium. In comparison, femtoESI was found to favor the generation of [M + H]+ ions against metal adducts, even with nonvolatile salts up to 1 mM for NaCl and 100 μM for CaCl2. For labeled glucose homopolymer (GHP) glycans, nanoESI and femtoESI had 0.81 and 3 nM detection limits, respectively. With LC separation and a much higher flow rate, conventional microflow ESI detected all glycans with 10-fold lower concentrations. Overall, nanoESI had the optimum uniformity in the relative ionization efficiency (RIE). When summing up intensities of analyte ions formed with all charge carriers, the RIE of the midsized glycans (10 to 16 glucose units) appear to be uniform (RIE 95%-105%). For the smaller (1-5 glucose units) glycan components, femtoESI provided better uniformity than nanoESI and conventional ESI. For the labeled IgG N-glycans, the impact of chemical structure on the ionization efficiency was revealed by the strong correlation between their RIE trends in different ionization modes.
Collapse
Affiliation(s)
- Nicholas R Allen
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Kanwal Jeet
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Tolulope Ogunsanya
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Ian Ferraro
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Nancy Fernandes
- Lonza Biologics, 101 International Drive, Portsmouth, New Hampshire 03801, United States
| | - Huishan Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Thaddaeus Webster
- Lonza Biologics, 101 International Drive, Portsmouth, New Hampshire 03801, United States
| | - Carrie Mason
- Lonza Biologics, 101 International Drive, Portsmouth, New Hampshire 03801, United States
| | - Anyin Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| |
Collapse
|
4
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
5
|
Quintero AV, Liyanage OT, Kim HJ, Gallagher ES. Characterizing the Dynamics of Solvated Disaccharides with In-Electrospray Ionization Hydrogen/Deuterium Exchange-Mass Spectrometry. Anal Chem 2024; 96:12649-12657. [PMID: 39061116 DOI: 10.1021/acs.analchem.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Carbohydrates have various biological functions that are based on their structures. However, the composition and the glycosidic-bond linkage and configuration of carbohydrates present challenges for their characterization. Furthermore, isomeric features contribute to the formation of intramolecular hydrogen bonds, which influence the flexibility and dynamics of carbohydrates. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) enables the analysis of protein dynamics by monitoring deuterium labeling after HDX for different lengths of time. In-electrospray ionization (in-ESI) HDX-MS has been used to rapidly label solvated carbohydrates with labeling occurring during desolvation of ESI droplets. Therefore, HDX-labeling times can be altered by changing the spray-solvent conductivity, which changes the initial size of ESI droplets and their resulting lifetimes. Here, we utilize in-ESI HDX-MS to characterize nine isomeric disaccharides with different monosaccharide compositions and glycosidic-bond linkages and configurations. We compared both the relative D-uptake of isomers at individual conductivities, or HDX-labeling times, and the trends associated with labeling at multiple conductivities. Interestingly, the relative D-uptake trends were correlated to isomeric features that affect disaccharide flexibility, including formation of intramolecular hydrogen bonds. Among the isomeric features studied, linkage was observed to have a significant influence on relative D-uptake with (1-3)-linked disaccharides having more change in relative D-uptake with changing conductivity compared to other linkages. Overall, this research illustrates how in-ESI HDX-MS can be applied to structurally characterize disaccharides with distinct isomeric features. Furthermore, this work shows that in-ESI HDX-MS can be used to monitor the dynamics of solvated molecules with rapidly exchanging functional groups.
Collapse
Affiliation(s)
- Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - O Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - H Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
6
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
7
|
Attanayake K, Mahmud S, Banerjee C, Sharif D, Rahman M, Majuta S, DeBastiani A, Sultana MN, Foroushani SH, Li C, Li P, Valentine SJ. Examining DNA Structures with In-droplet Hydrogen/Deuterium Exchange Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 499:117231. [PMID: 38854816 PMCID: PMC11156224 DOI: 10.1016/j.ijms.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Capillary vibrating sharp-edge spray ionization (cVSSI) combined with hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been utilized to characterize different solution-phase DNA conformers including DNA G-quadruplex topologies as well as triplex DNA and duplex DNA. In general, G-quadruplex DNA shows a wide range of protection of hydrogens extending from ~12% to ~21% deuterium incorporation. Additionally, the DNA sequences selected to represent parallel, antiparallel, and hybrid G-quadruplex topologies exhibit slight differences in deuterium uptake levels which appear to loosely relate to overall conformer stability. Notably, the exchange level for one of the hybrid sequence sub topologies of G-quadruplex DNA (24 TTG) is significantly different (compared with the others studied here) despite the DNA sequences being highly comparable. For the quadruplex-forming sequences, correlation analysis suggests protection of base hydrogens involved in tetrad hydrogen bonding. For duplex DNA ~19% deuterium incorporation is observed while only ~16% is observed for triplex DNA. This increased protection of hydrogens may be due to the added backbone scaffolding and Hoogsteen base pairing of the latter species. These experiments lay the groundwork for future studies aimed at determining the structural source of this protection as well as the applicability of the approach for ascertaining different oligonucleotide folds, co-existing conformations, and/or overall conformer flexibility.
Collapse
Affiliation(s)
- Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Sultan Mahmud
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chandrima Banerjee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Mst Nigar Sultana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
8
|
Hatvany JB, Liyanage OT, Gallagher ES. Effect of pH on In-Electrospray Hydrogen/Deuterium Exchange of Carbohydrates and Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:441-448. [PMID: 38323552 DOI: 10.1021/jasms.3c00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Carbohydrates are critical for cellular functions as well as an important class of metabolites. Characterizing carbohydrate structures is a difficult analytical challenge due to the presence of isomers. In-electrospray hydrogen/deuterium exchange mass spectrometry (in-ESI HDX-MS) is a method of HDX that samples the solvated structure of carbohydrates during the ESI process and requires little to no instrument modification. Traditionally, solution-phase HDX is utilized with proteins to sample conformational differences, and pH is a critical parameter to monitor and control due to the presence of both acid- and base-catalyzed mechanisms of exchange. For In-ESI HDX, the pH surrounding the analyte changes before and during labeling, which has the potential to affect the rate of labeling for analytes. Herein, we alter the pH of spray solutions containing model carbohydrates and peptides, perform in-ESI HDX-MS, and characterize the deuterium uptake trends. Varying pH results in altered D uptake, though the overall trends differ from the expected bulk-solution trends due to the electrospray process. These findings show the utility of varying pH prior to in-ESI HDX-MS for establishing different extents of HDX as well as distinguishing labile functional groups that are present in different analytes.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - O Tara Liyanage
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Gass DT, Cordes MS, Alberti SN, Kim HJ, Gallagher ES. Evidence of H/D Exchange within Metal-Adducted Carbohydrates after Ion/Ion-Dissociation Reactions. J Am Chem Soc 2023; 145:23972-23985. [PMID: 37874934 DOI: 10.1021/jacs.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information on biomolecules. Ion/ion reactions are competitive reactions, where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for the structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron-transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene─the primary, commercially available anion reagent─interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT─also described as HDX─mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogeneous biomolecules, such as carbohydrates.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sebastian N Alberti
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - H Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
10
|
Hatvany JB, Gallagher ES. Hydrogen/deuterium exchange for the analysis of carbohydrates. Carbohydr Res 2023; 530:108859. [PMID: 37290371 DOI: 10.1016/j.carres.2023.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Carbohydrates and glycans are integral to many biological processes, including cell-cell recognition and energy storage. However, carbohydrates are often difficult to analyze due to the high degree of isomerism present. One method being developed to distinguish these isomeric species is hydrogen/deuterium exchange-mass spectrometry (HDX-MS). In HDX-MS, carbohydrates are exposed to a deuterated reagent and the functional groups with labile hydrogen atoms, including hydroxyls and amides, exchange with the 1 amu heavier isotope, deuterium. These labels can then be detected by MS, which monitors the mass increase with the addition of D-labels. The observed rate of exchange is dependent on the exchanging functional group, the accessibility of the exchanging functional group, and the presence of hydrogen bonds. Herein, we discuss how HDX has been applied in the solution-phase, gas-phase, and during MS ionization to label carbohydrates and glycans. Additionally, we compare differences in the conformations that are labeled, the labeling timeframes, and applications of each of these methods. Finally, we comment on future opportunities for development and use of HDX-MS to analyze glycans and glycoconjugates.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
11
|
Williamson DL, Trimble TK, Nagy G. Hydrogen-Deuterium-Exchange-Based Mass Distribution Shifts in High-Resolution Cyclic Ion Mobility Separations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37098274 DOI: 10.1021/jasms.3c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mass distribution of ions influences separations in ion mobility spectrometry-mass spectrometry (IMS-MS). Herein, we introduce a method to induce mass distribution shifts for various analytes using hydrogen-deuterium exchange (HDX) immediately prior to ionization using a dual syringe approach. By replacing labile hydrogens on analytes with deuteriums, we were able to differentiate isomers using separations of isotopologues. For each analyte studied, every possible level of deuteration (from undeuterated to fully deuterated) was generated and then separated using cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS). The information gained from such separations (relative arrival times; tRel. values) was found to be orthogonal to conventional IMS-MS separations. Additionally, the observed shifts were linearly additive with increasing deuteration, suggesting that this methodology could be extended to analytes with a larger number of labile hydrogens. For one isomer pair, as few as two deuteriums were able to produce a large enough mass distribution shift to differentiate isomers. In another experiment, we found that the mass distribution shift was large enough to overcome the reduced mass contribution, resulting in a "flipped" arrival time where the heavier deuterated isotopologue arrived before the lighter one. In this work, we present a proof-of-concept demonstration that mass-distribution-based shifts, tRel. values, could potentially act as an added dimension to characterize molecules in IMS-MS. We anticipate, along with future work in this area, that mass-distribution-based shifts could enable the identification of unknown molecules through a database-driven approach in an analogous fashion to collision cross section (CCS) measurements.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Tyson K Trimble
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Analysis of 16O/ 18O and H/D Exchange Reactions between Carbohydrates and Heavy Water Using High-Resolution Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23073585. [PMID: 35408942 PMCID: PMC8998639 DOI: 10.3390/ijms23073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Mono- and polysaccharides are an essential part of every biological system. Identifying underivatized carbohydrates using mass spectrometry is still a challenge because carbohydrates have a low capacity for ionization. Normally, the intensities of protonated carbohydrates are relatively low, and in order to increase the corresponding peak height, researchers add Na+, K+, or NH4+to the solution. However, the fragmentation spectra of the corresponding ions are very poor. Based on this, reliably identifying carbohydrates in complex natural and biological objects can benefit frommeasuring additional molecular descriptors, especially those directly connected to the molecular structure. Previously, we reported that the application of the isotope exchange approach (H/D and 16O/18O) to high-resolution mass spectrometry can increase the reliability of identifying drug-like compounds. Carbohydrates possess many -OH and -COOH groups, making it reasonable to expect that the isotope exchange approach would have considerable potential for detecting carbohydrates. Here, we used a collection of standard carbohydrates to investigate the isotope exchange reaction (H/D and 16O/18O) in carbohydrates and estimate its analytical applications.
Collapse
|
13
|
Osipenko S, Nikolaev E, Kostyukevich Y. Amine additives for improved in-ESI H/D exchange. Analyst 2022; 147:3180-3185. [DOI: 10.1039/d2an00081d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-ESI H/D exchange is a convenient technique for analyzing small-molecular complex mixtures.
Collapse
Affiliation(s)
- Sergey Osipenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Eugene Nikolaev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| | - Yury Kostyukevich
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str., 3, 121205 Moscow, Russia
| |
Collapse
|
14
|
Calixte EI, Liyanage OT, Gass DT, Gallagher ES. Formation of Carbohydrate-Metal Adducts from Solvent Mixtures during Electrospray: A Molecular Dynamics and ESI-MS Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2738-2745. [PMID: 34735139 DOI: 10.1021/jasms.1c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrospray ionization (ESI) is frequently used to produce gas-phase ions for mass spectrometry (MS)-based techniques. The composition of solvents used in ESI-MS is often manipulated to enhance analyte ionization, including for carbohydrates. Moreover, to characterize analyte structures, ESI has been coupled to hydrogen/deuterium exchange, ion mobility, and tandem MS. Therefore, it is important to understand how solvent composition affects the structure of carbohydrates during and after ESI. In this work, we use molecular dynamics to simulate the desolvation of ESI droplets containing a model carbohydrate and observe the formation of carbohydrate adducts with metal ions. Molecular-level details on the effects of formulating mixtures of water, methanol, and acetonitrile to achieve enhanced ionization are presented. We complement our simulations with ESI-MS experiments. We report that when sprayed from aqueous mixtures containing volatile solvents, carbohydrates ionize to form metal-ion adducts rapidly due to rapid solvent evaporation rather than changes in the ionization mechanism. We find that when sprayed from solvent mixtures, carbohydrates are primarily solvated by water due to the migration of more volatile solvents to the surface of the droplet. Ultimately, the structure of the carbohydrate varies depending on its solvent environment, as inter- and intramolecular interactions are affected. We propose that solvents with 25% or more water may be used to enhance the ionization of carbohydrates with minimal effect on the structure during and after ESI.
Collapse
Affiliation(s)
- Emvia I Calixte
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - O Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
15
|
Song X, Li J, Mofidfar M, Zare RN. Distinguishing between Isobaric Ions Using Microdroplet Hydrogen-Deuterium Exchange Mass Spectrometry. Metabolites 2021; 11:728. [PMID: 34822386 PMCID: PMC8625015 DOI: 10.3390/metabo11110728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Isobaric ions having the same mass-to-charge ratio cannot be separately identified by mass spectrometry (MS) alone, but this limitation can be overcome by using hydrogen-deuterium exchange (HDX) in microdroplets. Because isobaric ions may contain a varied number of exchangeable sites and different types of functional groups, each one produces a unique MS spectral pattern after droplet spray HDX without the need for MS/MS experiments or introduction of ion mobility measurements. As an example of the power of this approach, isobaric ions in urinary metabolic profiles are identified and used to distinguish between healthy individuals and those having bladder cancer.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
- Department of Chemistry, Fudan University, Shanghai 200438, China;
| | - Jia Li
- Department of Chemistry, Fudan University, Shanghai 200438, China;
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
| |
Collapse
|
16
|
DeBastiani A, Majuta SN, Sharif D, Attanayake K, Li C, Li P, Valentine SJ. Characterizing Multidevice Capillary Vibrating Sharp-Edge Spray Ionization for In-Droplet Hydrogen/Deuterium Exchange to Enhance Compound Identification. ACS OMEGA 2021; 6:18370-18382. [PMID: 34308068 PMCID: PMC8296548 DOI: 10.1021/acsomega.1c02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Multidevice capillary vibrating sharp-edge spray ionization (cVSSI) source parameters have been examined to determine their effects on conducting in-droplet hydrogen/deuterium exchange (HDX) experiments. Control experiments using select compounds indicate that the observed differences in mass spectral isotopic distributions obtained upon initiation of HDX result primarily from solution-phase reactions as opposed to gas-phase exchange. Preliminary studies have determined that robust HDX can only be achieved with the application of same-polarity voltage to both the analyte and the deuterium oxide reagent (D2O) cVSSI devices. Additionally, a similar HDX reactivity dependence on the voltage applied to the D2O device for various analytes is observed. Analyte and reagent flow experiments show that, for the multidevice cVSSI setup employed, there is a nonlinear dependence on the D2O reagent flow rate; increasing the D2O reagent flow by 100% results in only an ∼10-20% increase in deuterium incorporation for this setup. Instantaneous (subsecond) response times have been demonstrated in the initiation or termination of HDX, which is achieved by turning on or off the reagent cVSSI device piezoelectric transducer. The ability to distinguish isomeric species by in-droplet HDX is presented. Finally, a demonstration of a three-component cVSSI device setup to perform multiple (successive or in combination) in-droplet chemistries to enhance compound ionization and identification is presented and a hypothetical metabolomics workflow consisting of successive multidevice activation is briefly discussed.
Collapse
|
17
|
Wu F, Wang Y, Chen Y, Li Z, Ding CF. Alkali metal ion-induced conformation changes of methionine- and leucine enkephalin investigated by gas-phase hydrogen/deuterium exchange combined with theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Liyanage OT, Quintero AV, Hatvany JB, Gallagher ES. Distinguishing Carbohydrate Isomers with Rapid Hydrogen/Deuterium Exchange-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:152-156. [PMID: 33124815 DOI: 10.1021/jasms.0c00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbohydrates play key roles in facilitating cellular functions, yet characterizing their structures is analytically challenging due to the presence of epimers, regioisomers, and stereoisomers. In-electrospray-hydrogen/deuterium exchange-mass spectrometry (in-ESI HDX-MS) is a rapid HDX method that samples solvated carbohydrates with minimal instrument modification. When applied to proteins, HDX is often measured after multiple time points to sample the dynamics of structures. Herein, we alter the HDX reaction time by modifying the spray-solvent conductivity, which changes the initial size of ESI droplets, and thus, the droplet lifetimes. We show that this change in droplet lifetime alters the magnitude of HDX for carbohydrate-metal adducts. Furthermore, we illustrate how monitoring HDX at multiple time points enables three trisaccharide isomers (melezitose, maltotriose, and isomaltotriose) to be distinguished. This work illustrates the feasibility of this method for characterizing solvated carbohydrates, including isomeric species which differ only by linkage.
Collapse
Affiliation(s)
- O Tara Liyanage
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Ana V Quintero
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
19
|
El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. AMB Express 2020; 10:201. [PMID: 33146788 PMCID: PMC7642061 DOI: 10.1186/s13568-020-01141-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
Rhamnolipids are important biosurfactants for application in bioremediation, enhanced oil recovery, pharmaceutical, and detergent industry. In this study, rhamnolipids extracted from P. aeruginosa P6 were characterized to determine their potential fields of application. Thin-layer chromatographic analysis of the produced rhamnolipids indicated the production of two homologues: mono- and di-rhamnolipids, whose structures were verified by 1H and 13C nuclear magnetic resonance spectroscopy. Additionally, high performance liquid chromatography-mass spectrometry identified seven different rhamnolipid congeners, of which a significantly high proportion was di-rhamnolipids reaching 80.16%. Rha-Rha-C10-C10 was confirmed as the principal compound of the rhamnolipid mixture (24.30%). The rhamnolipids were capable of lowering surface tension of water to 36 mN/m at a critical micelle concentration of 0.2 g/L, and exhibited a great emulsifying activity (E24 = 63%). In addition, they showed excellent stability at pH ranges 4-8, NaCl concentrations up to 9% (w/v) and temperatures ranging from 20 to 100 °C and even after autoclaving. These results suggest that rhamnolipids, produced by P. aeruginosa P6 using the cheap substrate glycerol, are propitious for biotechnology use in extreme and complex environments, like oil reservoirs and hydrocarbon contaminated soil. Moreover, P. aeruginosa P6 may be considered, in its wild type form, as a promising industrial producer of di-RLs, which have superior characteristics for potential applications and offer outstanding commercial benefits.
Collapse
Affiliation(s)
- Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain shams University, POB: 11566, Abbassia, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain shams University, POB: 11566, Abbassia, Cairo, Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain shams University, POB: 11566, Abbassia, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain shams University, POB: 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
20
|
Sanguantrakun N, Chanthamontri C, Gross ML. Top-Down Analysis of In-Source HDX of Native Protein Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1151-1154. [PMID: 32275420 PMCID: PMC7489294 DOI: 10.1021/jasms.9b00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is used in protein biophysics to probe folding dynamics, intermolecular interactions, epitope and other mapping. A typical procedure often involves HDX in buffered D2O solution followed by pepsin digestion, and liquid chromatography/electrospray ionization mass spectrometry analysis. In this work, HDX of protein ions was conducted in the ESI source. Both native electrospray droplets of ubiquitin and denatured myoglobin were exposed to D2O vapor in the source region of a Bruker SolariX 12T FTICR-mass spectrometer. Electron capture dissociation was used to assess deuterium incorporation at the residue level. This in-source HDX, on the millisecond-time scale, exchanges side-chain hydrogens and fast-exchanging amides compared to conventional minutes-to-hours HDX of backbone hydrogens in solution with less sample preparation (i.e., no D2O/protein mixing and incubation, no quenching, protein digestion, or LC separation).
Collapse
Affiliation(s)
- Nawaporn Sanguantrakun
- Department of Basic Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Chamnongsak Chanthamontri
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
- Millipore Sigma, 2909 Laclede Avenue, St. Louis, MO 63103
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
21
|
Electrospray ionization mass spectrometric solvate cluster and multiply charged ions: a stochastic dynamic approach to 3D structural analysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2555-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Largy E, Gabelica V. Native Hydrogen/Deuterium Exchange Mass Spectrometry of Structured DNA Oligonucleotides. Anal Chem 2020; 92:4402-4410. [PMID: 32039580 DOI: 10.1021/acs.analchem.9b05298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although solution hydrogen-deuterium exchange mass spectrometry (HDX/MS) is well-established for the analysis of the structure and dynamics of proteins, it is currently not exploited for nucleic acids. Here we used DNA G-quadruplex structures as model systems to demonstrate that DNA oligonucleotides are amenable to in-solution HDX/MS in native conditions. In trimethylammonium acetate solutions and in soft source conditions, the protonated phosphate groups are fully back-exchanged in the source, while the exchanged nucleobases remain labeled without detectable back-exchange. As a result, the exchange rates depend strongly on the secondary structure (hydrogen bonding status) of the oligonucleotides, but neither on their charge state nor on the presence of nonspecific adducts. We show that native mass spectrometry methods can measure these exchange rates on the second to the day time scale with high precision. Such combination of HDX with native MS opens promising avenues for the analysis of the structural and biophysical properties of oligonucleotides and their complexes.
Collapse
Affiliation(s)
- Eric Largy
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoires Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|
23
|
Kim HJ, Gallagher ES. Achieving multiple hydrogen/deuterium exchange timepoints of carbohydrate hydroxyls using theta-electrospray emitters. Analyst 2020; 145:3056-3063. [DOI: 10.1039/d0an00135j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microsecond reaction times for in-droplet hydrogen/deuterium exchange of carbohydrate hydroxyls have been varied by changing the opening sizes of theta-electrospray emitters.
Collapse
Affiliation(s)
- H. Jamie Kim
- Department of Chemistry and Biochemistry
- Baylor University
- Waco
- USA
| | | |
Collapse
|
24
|
Calixte EI, Liyanage OT, Kim HJ, Ziperman ED, Pearson AJ, Gallagher ES. Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray. J Phys Chem B 2019; 124:479-486. [DOI: 10.1021/acs.jpcb.9b10369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emvia I. Calixte
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - O. Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - H. Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Emily D. Ziperman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Amanda J. Pearson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Elyssia S. Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
25
|
Liyanage OT, Seneviratne CA, Gallagher ES. Applying an Internal Standard to Improve the Repeatability of In-electrospray H/D Exchange of Carbohydrate-Metal Adducts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1368-1372. [PMID: 30903386 DOI: 10.1007/s13361-019-02153-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In-electrospray (ESI) hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been used to characterize solvated carbohydrate structures. However, the rapid exchange rate of hydroxyls, as well as variations in source conditions and ambient humidity, alter the extent of forward and back exchange, resulting in poor repeatability when quantifying D-uptake on different days. Herein, we compare two internal standards, a peptide and derivatized carbohydrate, to improve the repeatability of in-ESI HDX of carbohydrate-metal adducts. Our results show that maltoheptaose, derivatized with Girard's T reagent, is a suitable internal standard for improving the repeatability of in-ESI HDX analyses of carbohydrates of varying size.
Collapse
Affiliation(s)
- O Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | | | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|