1
|
Zhu H, Nytka M, Vu TNK, Lemr K, Tureček F. Photochemical and Collision-Induced Cross-Linking in Stereochemically Distinct Scaffolds of Peptides and Nitrile Imines in Gas-Phase Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39444374 DOI: 10.1021/jasms.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Intramolecular cross-linking between peptides and nitrile-imine intermediates was studied in stereochemically distinct conjugates in which the reacting components were mounted on cis-1,2-cyclohexane and trans-1,4-cyclohexane scaffolds that we call 1,2-s-peptides and 1,4-s-peptides, respectively. The nitrile-imine intermediates were generated by N2 loss from 2,5-diaryltetrazole tags upon UV-photodissociation at 213 and 250 nm or by collision-induced dissociation, and further interrogated by CID and UVPD-MS3. Peptide fragment ion series originating from linear structures and macrocyclic cross-links were distinguished and used to quantify the cross-linking yields. The yields in MS2 varied between 27% for AAAG conjugates to 78% for GAAAK conjugates, depending on the peptide sequence. The CID-MS3 yields were in a 57-97% range, depending on the peptide sequence. Structures of 1,2-s-peptide and 1,4-s-peptide ions as well as several of their nitrile-imine intermediates and cross-links were investigated by high-resolution cyclic ion mobility in combination with Born-Oppenheimer molecular dynamics and density functional theory calculations. Matches between the experimental and calculated collision cross sections and ion relative Gibbs energies were used to assign peptide structures. Peptide conjugates C-terminated with Gly and Lys residues underwent cross-linking by the carboxyl group, as established by MS3 sequencing and corroborated by carboxyl blocking experiments that lowered the cross-linking yields. Peptide conjugates C-terminated with Arg also cross-linked via the side-chain guanidine group. A notable feature of the 1,4-s-peptide ions was the participation of low-energy twist-boat cyclohexane conformers that was enforced by strong hydrogen bonds between the peptide and nitrile imine.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Chemistry, Bagley Hall, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Marianna Nytka
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc 77900, Czech Republic
| | - Tuan Ngoc Kim Vu
- Department of Chemistry, Bagley Hall, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc 77900, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - František Tureček
- Department of Chemistry, Bagley Hall, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
2
|
Wan J, Nytka M, Qian H, Vu K, Lemr K, Tureček F. Nitrile Imines as Peptide and Oligonucleotide Photo-Cross-Linkers in Gas-Phase Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:344-356. [PMID: 38252626 DOI: 10.1021/jasms.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nitrile imines produced by photodissociation of 2,5-diaryltetrazoles undergo cross-linking reactions with amide groups in peptide-tetrazole (tet-peptide) conjugates and a tet-peptide-dinucleotide complex. Tetrazole photodissociation in gas-phase ions is efficient, achieving ca. 50% conversion with 2 laser pulses at 250 nm. The formation of cross-links was detected by CID-MS3 that showed structure-significant dissociations by loss of side-chain groups and internal peptide segments. The structure and composition of cross-linking products were established by a combination of UV-vis action spectroscopy and cyclic ion mobility mass spectrometry (c-IMS). The experimental absorption bands were found to match the bands calculated for vibronic absorption spectra of nitrile imines and cross-linked hydrazone isomers. The calculated collision cross sections (CCSth) for these ions were related to the matching experimental CCSexp from multipass c-IMS measurements. Loss of N2 from tet-peptide conjugates was calculated to be a mildly endothermic reaction with ΔH0 = 80 kJ mol-1 in the gas phase. The excess energy in the photolytically formed nitrile imine is thought to drive endothermic proton transfer, followed by exothermic cyclization to a sterically accessible peptide amide group. The exothermic nitrile imine reaction with peptide amides is promoted by proton transfer and may involve an initial [3 + 2] cycloaddition followed by cleavage of the oxadiazole intermediate. Nucleophilic groups, such as cysteine thiol, did not compete with the amide cyclization. Nitrile imine cross-linking to 2'-deoxycytidylguanosine was found to be >80% efficient and highly specific in targeting guanine. The further potential for exploring nitrile-imine cross-linking for biomolecular structure analysis is discussed.
Collapse
Affiliation(s)
- Jiahao Wan
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Marianna Nytka
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 779 00, Czech Republic
| | - Haocheng Qian
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kim Vu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 779 00, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Tureček F. Covalent crosslinking in gas-phase biomolecular ions. An account and perspective. Phys Chem Chem Phys 2023; 25:32292-32304. [PMID: 37990588 DOI: 10.1039/d3cp04879a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Photochemical crosslinking in gas-phase ion complexes has been introduced as a method to study biomolecular structures and dynamics. Emphasis has been on carbene-based crosslinking induced by photodissociation of diazirine-tagged ions. The features that characterize gas-phase crosslinking include (1) complex formation in electrospray droplets that allows for library-type screening; (2) well defined stoichiometry of the complexes due to mass-selective isolation; (3) facile reaction monitoring and yield determination, and (4) post-crosslinking structure analysis by tandem mass spectrometry that has been combined with hydrogen-deuterium exchange, UV-vis action spectroscopy, and ion mobility measurements. In this account, examples are given of peptide-peptide, peptide-nucleotide, and peptide-ligand crosslinking that chiefly used carbene-based reactions. The pros and cons of gas-phase crosslinking are discussed. Nitrile-imine based crosslinking in gas-phase ions is introduced as a promising new approach to ion structure analysis that offers high efficiency and has the potential for wide ranging applications.
Collapse
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, WA 98195-1700, USA.
| |
Collapse
|
4
|
Zhu H, Zima V, Ding ER, Tureček F. Carbene Cross-Linking in Gas-Phase Peptide Ion Scaffolds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:763-774. [PMID: 36881876 DOI: 10.1021/jasms.3c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scaffolds consisting of a peptide, a phthalate linker, and a 4,4-azipentyl group were synthesized and used to study intramolecular peptide-carbene cross-linking in gas-phase cations. Carbene intermediates were generated by UV-laser photodissociation at 355 nm of the diazirine ring in mass-selected ions, and the cross-linked products were detected and quantified by collision-induced dissociation tandem mass spectrometry (CID-MSn, n = 3-5). Peptide scaffolds containing Ala and Leu residues with a C-terminal Gly gave 21-26% yields of cross-linked products, while the presence of the Pro and His residues decreased the yields. Experiments using hydrogen-deuterium-hydrogen exchange, carboxyl group blocking, and analysis of CID-MSn spectra of reference synthetic products revealed that a significant fraction of cross-links involved the Gly amide and carboxyl groups. Interpretation of the cross-linking results was aided by Born-Oppenheimer molecular dynamics (BOMD) and density functional theory calculations that allowed us to establish the protonation sites and conformations of the precursor ions. Analysis of long (100 ps) BOMD trajectories was used to count close contacts between the incipient carbene and peptide atoms, and the counting statistics was correlated with the results of gas-phase cross-linking.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Václav Zima
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Emily R Ding
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
5
|
Wan J, Brož B, Liu Y, Huang SR, Marek A, Tureček F. Resolution of Identity in Gas-Phase Dissociations of Mono- and Diprotonated DNA Trinucleotide Codons by 15N-Labeling and Computational Structure Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1936-1950. [PMID: 36040435 DOI: 10.1021/jasms.2c00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissociations of DNA trinucleotide codons as gas-phase singly and doubly protonated ions were studied by tandem mass spectrometry using 15N-labeling to resolve identity in the nucleobase loss and backbone cleavages. The monocations showed different distributions of nucleobase loss from the 5'-, middle, and 3'-positions depending on the nucleobase, favoring cytosine over guanine, adenine, and thymine in an ensemble-averaged 62:27:11:<1 ratio. The distribution for the loss of the 5'-, middle, and 3'-nucleobase was 49:18:33, favoring the 5'-nucleobase, but also depending on its nature. The formation of sequence w2+ ions was unambiguously established for all codon mono- and dications. Structures of low-Gibbs-energy protomers and conformers of dAAA+, dGGG+, dCCC+, dTTT+, dACA+, and dATC+ were established by Born-Oppenheimer molecular dynamics and density functional theory calculations. Monocations containing guanine favored classical structures protonated at guanine N7. Structures containing adenine and cytosine produced classical nucleobase-protonated isomers as well as zwitterions in which two protonated bases were combined with a phosphate anion. Protonation at thymine was disfavored. Low threshold energies for nucleobase loss allowed extensive proton migration to occur prior to dissociation. Loss of the nucleobase from monocations was assisted by neighboring group participation in nucleophilic addition or proton abstraction, as well as allosteric proton migrations remote from the reaction center. The optimized structures of diprotonated isomers for dAAA2+ and dACA2+ revealed combinations of classical and zwitterionic structures. The threshold and transition-state energies for nucleobase-ion loss from dications were low, resulting in facile dissociations involving cytosine, guanine, and adenine.
Collapse
Affiliation(s)
- Jiahao Wan
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Břetislav Brož
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Yue Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Zima V, Liu Y, Tureček F. Radical Cascade Dissociation Pathways to Unusual Nucleobase Cation Radicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1038-1047. [PMID: 35536606 DOI: 10.1021/jasms.2c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report unusual dissociations of protonated RNA nucleosides tagged with radical initiator groups at ribose 5'-O and furnished with a 2',3'-O-isopropylidene protecting group. The ions undergo collision-induced radical cascade dissociations starting at the radical initiator that break down the dioxolane ring and trigger the formation of nucleobase cations and cation radicals. The adenine cation radical that was formed by radical cascade dissociations was identified by MS5 UV-vis photodissociation action spectroscopy to be a higher-energy N-3-H tautomer of the canonical ionized nucleobase. The guanine cation radical was formed by radical cascade dissociations as the N-7-H tautomer. In contrast to adenosine and guanosine, radical cascade dissociations of the tagged ribocytidine ion produced protonated cytosine, whereas tagged ribothymidine showed yet different dissociations resulting in predominant thymine loss. Reaction mechanisms were suggested for the cascade dissociations that were based on Born-Oppenheimer molecular dynamics and density functional theory calculations that were used to map the relevant parts of the potential energy surfaces for adenosine, guanosine, and cytidine radical ions. The reported radical cascade dissociations represent a new, nonredox approach to nucleobase and nucleoside cation radicals that has the potential of being expanded to the generation of various oligonucleotide cation radicals.
Collapse
Affiliation(s)
- Václav Zima
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 981195-1700, United States
| | - Yue Liu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 981195-1700, United States
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 981195-1700, United States
| |
Collapse
|
7
|
Liu Y, Liu Y, Nytka M, Huang SR, Lemr K, Tureček F. Probing d- and l-Adrenaline Binding to β 2-Adrenoreceptor Peptide Motifs by Gas-Phase Photodissociation Cross-Linking and Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1041-1052. [PMID: 33655750 DOI: 10.1021/jasms.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diazirine-tagged d- and l-adrenaline derivatives formed abundant noncovalent gas-phase ion complexes with peptides N-Ac-SSIVSFY-NH2 (peptide S) and N-Ac-VYILLNWIGY-NH2 (peptide V) upon electrospray ionization. These peptide sequences represent the binding motifs in the β2-adrenoreceptor. The structures of the gas-phase complexes were investigated by selective laser photodissociation of the diazirine chromophore at 354 nm, which resulted in a loss of N2 and formation of a transient carbene intermediate in the adrenaline ligand without causing its expulsion. The photolyzed complexes were analyzed by collision-induced dissociation (CID-MS3 and CID-MS4) in an attempt to detect cross-links and establish the binding sites. However, no cross-linking was detected in the complexes regardless of the peptide and d- or l-configuration in adrenaline. Cyclic ion mobility measurements were used to obtain collision cross sections (CCS) in N2 for the peptide S complexes. These showed identical values, 334 ± 0.9 Å2, for complexes of the l- and d-adrenaline derivatives, respectively. Identical CCS were also obtained for peptide S complexes with natural l- and d-adrenaline, 317 ± 1.2 Å2, respectively. Born-Oppenheimer molecular dynamics (BOMD) in combination with full geometry optimization by density functional theory calculations provided structures for the complexes that were used to calculate theoretical CCS with the ion trajectory method. A close match (337 Å2) was found for a single low Gibbs energy structure that displayed a binding pocket with Ser 2 and Ser 5 residues forming hydrogen bonds to the adrenaline catechol hydroxyls. Analysis of the BOMD trajectories revealed a small number of contacts between the incipient carbene carbon atom in the ligand and X-H bonds in the peptide, which was consistent with the lack of cross-linking. Temperature dependence of the internal dynamics of peptide S-adrenaline complexes as well as the specifics of the adrenaline carbene reactions are discussed. In particular, peptide amide hydrogen transfer to the carbene carbon atom was calculated to require crossing a potential energy barrier, which may hamper cross-linking in competition with carbene internal rearrangements.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Yue Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Marianna Nytka
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|