1
|
Casara A, Conti M, Bernardinello N, Tinè M, Baraldo S, Turato G, Semenzato U, Celi A, Spagnolo P, Saetta M, Cosio MG, Neri T, Biondini D, Bazzan E. Unveiling the Cutting-Edge Impact of Polarized Macrophage-Derived Extracellular Vesicles and MiRNA Signatures on TGF-β Regulation within Lung Fibroblasts. Int J Mol Sci 2024; 25:7490. [PMID: 39000595 PMCID: PMC11242851 DOI: 10.3390/ijms25137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Depending on local cues, macrophages can polarize into classically activated (M1) or alternatively activated (M2) phenotypes. This study investigates the impact of polarized macrophage-derived Extracellular Vesicles (EVs) (M1 and M2) and their cargo of miRNA-19a-3p and miRNA-425-5p on TGF-β production in lung fibroblasts. EVs were isolated from supernatants of M0, M1, and M2 macrophages and quantified using nanoscale flow cytometry prior to fibroblast stimulation. The concentration of TGF-β in fibroblast supernatants was measured using ELISA assays. The expression levels of miRNA-19a-3p and miRNA-425-5p were assessed via TaqMan-qPCR. TGF-β production after stimulation with M0-derived EVs and with M1-derived EVs increased significantly compared to untreated fibroblasts. miRNA-425-5p, but not miRNA-19a-3p, was significantly upregulated in M2-derived EVs compared to M0- and M1-derived EVs. This study demonstrates that EVs derived from both M0 and M1 polarized macrophages induce the production of TGF-β in fibroblasts, with potential regulation by miRNA-425-5p.
Collapse
Affiliation(s)
- Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy;
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy;
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy; (A.C.); (M.C.); (N.B.); (M.T.); (S.B.); (G.T.); (U.S.); (P.S.); (M.S.); (M.G.C.); (D.B.); (E.B.)
| |
Collapse
|
2
|
Yao H, Jiang R, Chen D, Li Y, Song M, Sun Z, Long G, Wu L, Hu W. Whole-Transcriptome Sequencing of Antler Tissue Reveals That circRNA2829 Regulates Chondrocyte Proliferation and Differentiation via the miR-4286-R+1/FOXO4 Axis. Int J Mol Sci 2023; 24:ijms24087204. [PMID: 37108365 PMCID: PMC10139046 DOI: 10.3390/ijms24087204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The antler is the unique mammalian organ found to be able to regenerate completely and periodically after loss, and the continuous proliferation and differentiation of mesenchymal cells and chondrocytes together complete the regeneration of the antler. Circular non-coding RNAs (circRNAs) are considered to be important non-coding RNAs that regulate body development and growth. However, there are no reports on circRNAs regulating the antler regeneration process. In this study, full-transcriptome high-throughput sequencing was performed on sika deer antler interstitial and cartilage tissues, and the sequencing results were verified and analyzed. The competing endogenous RNA (ceRNA) network related to antler growth and regeneration was further constructed, and the differentially expressed circRNA2829 was screened out from the network to study its effect on chondrocyte proliferation and differentiation. The results indicated that circRNA2829 promoted cell proliferation and increased the level of intracellular ALP. The analysis of RT-qPCR and Western blot demonstrated that the mRNA and protein expression levels of genes involved in differentiation rose. These data revealed that circRNAs play a crucial regulatory role in deer antler regeneration and development. CircRNA2829 might regulate the antler regeneration process through miR-4286-R+1/FOXO4.
Collapse
Affiliation(s)
- Haibo Yao
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Renfeng Jiang
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Danyang Chen
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Yanjun Li
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Mengmeng Song
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Zitong Sun
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
3
|
Chen Y, Zhang Z, Zhang J, Chen X, Guo Y, Li C. RNA sequencing-based identification of microRNAs in the antler cartilage of Gansu red deer ( Cervus elaphus kansuensis). PeerJ 2022; 10:e13947. [PMID: 36164600 PMCID: PMC9508884 DOI: 10.7717/peerj.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The velvet antler is a complex mammalian bone organ with unique biological characteristics, such as regeneration. The rapid growth stage (RGS) is a special period in the regeneration process of velvet antler. METHODS To elucidate the functions of microRNAs (miRNAs) at the RGS of antler development in Gansu red deer (Cervus elaphus kansuensis), we used RNA sequencing (RNA-seq) to analyze miRNA expression profiles in cartilage tissues of deer antler tips at three different growth stages. RESULTS The RNA-seq results revealed 1,073 known and 204 novel miRNAs, including 1,207, 1,242, and 1,204 from 30-, 60-, and 90-d antler cartilage tissues, respectively. To identify key miRNAs controlling rapid antler growth, we predicted target genes of screened 25 differentially expressed miRNAs (DEMs) and specifically expressed miRNAs (SEMs) in 60 d and annotated their functions. The KEGG results revealed that target genes of 25 DEMs and 30 SEMs were highly classified in the "Metabolic pathways", "Pathways in cancer", "Proteoglycans in cancer" and "PI3K-Akt signaling pathway". In addition, a novel miRNA (CM008039.1_315920), highly enriched in "NF-kappa B signaling pathway", may need further study. CONCLUSIONS The miRNAs identified in our study are potentially important in rapid antler growth. Our findings provide new insights to help elucidate the miRNA-mediated regulatory mechanisms involved during velvet antler development in C. elaphus kansuensis.
Collapse
Affiliation(s)
- Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhenxiang Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Jingjing Zhang
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Xiaxia Chen
- School of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Yuqin Guo
- Research Monitoring and Evaluation Center of Qinghai National Park, Xining, Qinghai, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
4
|
Wang Y, Hu W. Progress of Noncoding RNA Regulating the Growth and Development of Antler Tissue Research. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3541577. [PMID: 35909491 PMCID: PMC9325626 DOI: 10.1155/2022/3541577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Antler is the secondary sexual characteristic of deer, which develops on the forehead at puberty. It is the only organ that can be regenerated entirely in mammals. Therefore, it is often used as a research model in the field of organ regeneration and wound repair. Many growth factors and proteins play an active role throughout the developmental process of antler regeneration. With the rapid development of sequencing technology, more and more noncoding RNAs (ncRNAs) have been discovered, and the relationship between ncRNA and antler regeneration has gradually become clear. This paper focuses on the research progress of several ncRNAs (including miRNA and lncRNA) in deer antler tissues, which are helpful to reveal the molecular mechanism of deer antler regeneration at the molecular level.
Collapse
Affiliation(s)
- Yipu Wang
- Biochemistry and Molecular Biology, Jilin Agricultural University, Changchun City, Jilin Province 130000, China
| | - Wei Hu
- Biochemistry and Molecular Biology, Jilin Agricultural University, Changchun City, Jilin Province 130000, China
| |
Collapse
|
5
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|