1
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Diversity of the MHC class II DRB gene in the wolverine (Carnivora: Mustelidae: Gulo gulo) in Finland. PLoS One 2022; 17:e0267609. [PMID: 35536786 PMCID: PMC9089919 DOI: 10.1371/journal.pone.0267609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
The wolverine (Gulo gulo) in Finland has undergone significant population declines in the past. Since major histocompatibility complex (MHC) genes encode proteins involved in pathogen recognition, the diversity of these genes provides insights into the immunological fitness of regional populations. We sequenced 862 amplicons (242 bp) of MHC class II DRB exon 2 from 32 Finnish wolverines and identified 11 functional alleles and three pseudogenes. A molecular phylogenetic analysis indicated trans-species polymorphism, and PAML and MEME analyses indicated positive selection, suggesting that the Finnish wolverine DRB genes have evolved under balancing and positive selection. In contrast to DRB gene analyses in other species, allele frequencies in the Finnish wolverines clearly indicated the existence of two regional subpopulations, congruent with previous studies based on neutral genetic markers. In the Finnish wolverine, rapid population declines in the past have promoted genetic drift, resulting in a lower genetic diversity of DRB loci, including fewer alleles and positively selected sites, than other mustelid species analyzed previously. Our data suggest that the MHC region in the Finnish wolverine population was likely affected by a recent bottleneck.
Collapse
|
3
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|