1
|
Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci 2022; 293:120346. [PMID: 35065989 DOI: 10.1016/j.lfs.2022.120346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022]
Abstract
Minocycline, a second-generation tetracycline antibiotic is being widely tested in animals as well as clinical settings for the management of multiple neurological disorders. The drug has shown to exert protective action in a multitude of neurological disorders including spinal-cord injury, stroke, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Being highly lipophilic, minocycline easily penetrates the blood brain barrier and is claimed to have excellent oral absorption (~100% bioavailability). Minocycline possesses anti-inflammatory, immunomodulatory, and anti-apoptotic properties, thereby supporting its use in treating neurological disorders. The article henceforth reviews all the recent advances in the transformation of this antibiotic into a potential antiepileptic/antiepileptogenic agent. The article also gives an account of all the clinical trials undertaken till now validating the antiepileptic potential of minocycline. Based on the reported studies, minocycline seems to be an important molecule for treating epilepsy. However, the practical therapeutic implementations of this molecule require extensive mechanism-based in-vitro (cell culture) and in-vivo (animal models) studies followed by its testing in randomized, placebo controlled and double-blind clinical trials in large population as well as in different form of epilepsies.
Collapse
|
2
|
Bell LA, Wallis GJ, Wilcox KS. Reactivity and increased proliferation of NG2 cells following central nervous system infection with Theiler's murine encephalomyelitis virus. J Neuroinflammation 2020; 17:369. [PMID: 33272299 PMCID: PMC7713670 DOI: 10.1186/s12974-020-02043-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neuron-glial antigen 2 (NG2) cells are a glial cell type tiled throughout the gray and white matter of the central nervous system (CNS). NG2 cells are known for their ability to differentiate into oligodendrocytes and are commonly referred to as oligodendrocyte precursor cells. However, recent investigations have begun to identify additional functions of NG2 cells in CNS health and pathology. NG2 cells form physical and functional connections with neurons and other glial cell types throughout the CNS, allowing them to monitor and respond to the neural environment. Growing evidence indicates that NG2 cells become reactive under pathological conditions, though their specific roles are only beginning to be elucidated. While reactive microglia and astrocytes are well-established contributors to neuroinflammation and the development of epilepsy following CNS infection, the dynamics of NG2 cells remain unclear. Therefore, we investigated NG2 cell reactivity in a viral-induced mouse model of temporal lobe epilepsy. METHODS C57BL6/J mice were injected intracortically with Theiler's murine encephalomyelitis virus (TMEV) or PBS. Mice were graded twice daily for seizures between 3 and 7 days post-injection (dpi). At 4 and 14 dpi, brains were fixed and stained for NG2, the microglia/macrophage marker IBA1, and the proliferation marker Ki-67. Confocal z stacks were acquired in both the hippocampus and the overlying cortex. Total field areas stained by each cell marker and total field area of colocalized pixels between NG2 and Ki67 were compared between groups. RESULTS Both NG2 cells and microglia/macrophages displayed increased immunoreactivity and reactive morphologies in the hippocampus of TMEV-injected mice. While increased immunoreactivity for IBA1 was also present in the cortex, there was no significant change in NG2 immunoreactivity in the cortex following TMEV infection. Colocalization analysis for NG2 and Ki-67 revealed a significant increase in overlap between NG2 and Ki-67 in the hippocampus of TMEV-injected mice at both time points, but no significant differences in cortex. CONCLUSIONS NG2 cells acquire a reactive phenotype and proliferate in response to TMEV infection. These results suggest that NG2 cells alter their function in response to viral encephalopathy, making them potential targets to prevent the development of epilepsy following viral infection.
Collapse
Affiliation(s)
- Laura A Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 84112, USA
| | - Glenna J Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA.
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Hanak TJ, Libbey JE, Doty DJ, Sim JT, DePaula-Silva AB, Fujinami RS. Positive modulation of mGluR5 attenuates seizures and reduces TNF-α + macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy. Exp Neurol 2018; 311:194-204. [PMID: 30316834 DOI: 10.1016/j.expneurol.2018.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Viral encephalitis markedly increases the risk for the development of epilepsy. The Theiler's murine encephalomyelitis virus (TMEV)-induced model of seizures/epilepsy is a murine model of both viral-induced seizures/epilepsy and human Temporal Lobe Epilepsy. The inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α have been shown to play a role in seizure development in the TMEV-induced model of seizures/epilepsy, and infiltrating macrophages along with microglia have been shown to be major producers of these cytokines. The metabotropic glutamate receptor 5 (mGluR5) is a G-protein coupled receptor that has been shown to reduce IL-6 and TNF-α and to provide neuroprotection in other disease models. Therefore, we hypothesized that stimulation of mGluR5 would not only reduce seizures but attenuate IL-6 and TNF-α production in microglia and macrophages in the TMEV model. We found that pharmacological stimulation of mGluR5 with the selective positive allosteric modulator VU0360172 not only reduced acute seizure outcomes, but also reduced the percent of microglia and macrophages producing TNF-α 3 days post infection. Furthermore, treatment with VU0360172 did not alter the level of viral antigen, compared to controls, showing that this treatment does not compromise viral clearance. These results establish that mGluR5 may represent a therapeutic target in the TMEV-induced model of seizures/epilepsy.
Collapse
Affiliation(s)
- Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA; Interdepartmental Program in Neuroscience, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jordan T Sim
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Barker-Haliski ML, Heck TD, Dahle EJ, Vanegas F, Pruess TH, Wilcox KS, White HS. Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler's virus model of temporal lobe epilepsy. Epilepsia 2016; 57:1958-1967. [PMID: 27739576 PMCID: PMC5154893 DOI: 10.1111/epi.13577] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice induces acute seizures and development of spontaneous recurrent seizures and behavioral comorbidities weeks later. The present studies sought to determine whether acute therapeutic intervention with an anti-inflammatory-based approach could prevent or modify development of TMEV-induced long-term behavioral comorbidities. Valproic acid (VPA), in addition to its prototypical anticonvulsant properties, inhibits histone deacetylase (HDAC) activity, which may alter expression of the inflammasome. Minocycline (MIN) has previously demonstrated an antiseizure effect in the TMEV model via direct anti-inflammatory mechanisms, but the long-term effect of MIN treatment on the development of chronic behavioral comorbidities is unknown. METHODS Mice infected with TMEV were acutely administered MIN (50 mg/kg, b.i.d. and q.d.) or VPA (100 mg/kg, q.d.) during the 7-day viral infection period. Animals were evaluated for acute seizure severity and subsequent development of chronic behavioral comorbidities and seizure threshold. RESULTS Administration of VPA reduced the proportion of mice with seizures, delayed onset of symptomatic seizures, and reduced seizure burden during the acute infection. This was in contrast to the effects of administration of once-daily MIN, which did not affect the proportion of mice with seizures or delay onset of acute symptomatic seizures. However, VPA-treated mice were no different from vehicle (VEH)-treated mice in long-term behavioral outcomes, including open field activity and seizure threshold. Once-daily MIN treatment, despite no effect on the maximum observed Racine stage seizure severity, was associated with improved long-term behavioral outcomes and normalized seizure threshold. SIGNIFICANCE Acute seizure control alone is insufficient to modify chronic disease comorbidities in the TMEV model. This work further supports the role of an inflammatory response in the development of chronic behavioral comorbidities and further highlights the utility of this platform for the development of mechanistically novel pharmacotherapies for epilepsy.
Collapse
Affiliation(s)
- Melissa L. Barker-Haliski
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
- Department of Pharmacy, School of Pharmacy, University of Washington, Box 357630, H375 Health Sciences Building, Seattle, WA 98195-7630
| | - Taylor D. Heck
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - E. Jill Dahle
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Fabiola Vanegas
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Timothy H. Pruess
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - Karen S. Wilcox
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
| | - H. Steve White
- Anticonvulsant Drug Development Program, Dept. of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, 801-581-6733
- Department of Pharmacy, School of Pharmacy, University of Washington, Box 357630, H375 Health Sciences Building, Seattle, WA 98195-7630
| |
Collapse
|
5
|
Martinez JM, Groot JA, Curtis DC, Allison CL, Marquardt PC, Holmes AN, Edwards DS, Trotter DRM, Syapin PJ, Finn DA, Bergeson SE. Effective Reduction of Acute Ethanol Withdrawal by the Tetracycline Derivative, Tigecycline, in Female and Male DBA/2J Mice. Alcohol Clin Exp Res 2016; 40:2499-2505. [PMID: 27862011 DOI: 10.1111/acer.13259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a spectrum disorder characterized by mild to severe symptoms, including potential withdrawal signs upon cessation of consumption. Approximately five hundred thousand patients with AUD undergo clinically relevant episodes of withdrawal annually (New Engl J Med, 2003, 348, 1786). Recent evidence indicates potential for drugs that alter neuroimmune pathways as new AUD therapies. We have previously shown the immunomodulatory drugs, minocycline and tigecycline, were effective in reducing ethanol (EtOH) consumption in both the 2-bottle choice and drinking-in-the-dark paradigms. Here, we test the hypothesis that tigecycline, a tetracycline derivative, will reduce the severity of EtOH withdrawal symptoms in a common acute model of alcohol withdrawal (AWD) using a single anesthetic dose of EtOH in seizure sensitive DBA/2J (DBA) mice. METHODS Naïve adult female and male DBA mice were given separate injections of 4 g/kg i.p. EtOH with vehicle or tigecycline (0, 20, 40, or 80 mg/kg i.p.). The 80 mg/kg dose was tested at 3 time points (0, 4, and 7 hours) post EtOH treatment. Handling-induced convulsions (HICs) were measured before and then over 12 hours following EtOH injection. HIC scores and areas under the curve were tabulated. In separate mice, blood EtOH concentrations (BECs) were measured at 2, 4, and 7 hours postinjection of 4 g/kg i.p. EtOH in mice treated with 0 and 80 mg/kg i.p. tigecycline. RESULTS AWD symptom onset, peak magnitude, and overall HIC severity were reduced by tigecycline drug treatment compared to controls. Tigecycline treatment was effective regardless of timing throughout AWD, with earlier treatment showing greater efficacy. Tigecycline showed a dose-responsive reduction in acute AWD convulsions, with no sex differences in efficacy. Importantly, tigecycline did not affect BECs over a time course of elimination. CONCLUSIONS Tigecycline effectively reduced AWD symptoms in DBA mice at all times and dosages tested, making it a promising lead compound for development of a novel pharmacotherapy for AWD. Further studies are needed to determine the mechanism of tigecycline action.
Collapse
Affiliation(s)
- Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ashley N Holmes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David S Edwards
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David R M Trotter
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Peter J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Research, Portland VA Health Care System, Portland, Oregon
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
6
|
Libbey JE, Hanak TJ, Doty DJ, Wilcox KS, Fujinami RS. NBQX, a highly selective competitive antagonist of AMPA and KA ionotropic glutamate receptors, increases seizures and mortality following picornavirus infection. Exp Neurol 2016; 280:89-96. [PMID: 27072529 DOI: 10.1016/j.expneurol.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/25/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Seizures occur due to an imbalance between excitation and inhibition, with the balance tipping towards excitation, and glutamate is the predominant excitatory neurotransmitter in the central nervous system of mammals. Since upregulation of expression and/or function of glutamate receptors can contribute to seizures we determined the effects of three antagonists, NBQX, GYKI-52466 and MK 801, of the various ionotropic glutamate receptors, AMPA, NMDA and KA, on acute seizure development in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. We found that only NBQX had an effect on acute seizure development, resulting in a significantly higher number of mice experiencing seizures, an increase in the number of seizures per mouse, a greater cumulative seizure score per mouse and a significantly higher mortality rate among the mice. Although NBQX has previously been shown to be a potent anticonvulsant in animal seizure models, seizures induced by electrical stimulation, drug administration or as a result of genetic predisposition may differ greatly in terms of mechanism of seizure development from our virus-induced seizure model, which could explain the opposite, proconvulsant effect of NBQX observed in the TMEV-induced seizure model.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Libbey JE, Doty DJ, Sim JT, Cusick MF, Round JL, Fujinami RS. The effects of diet on the severity of central nervous system disease: One part of lab-to-lab variability. Nutrition 2016; 32:877-83. [PMID: 27133811 DOI: 10.1016/j.nut.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/04/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Many things can impact the reproducibility of results from laboratory to laboratory. For example, food from various sources can vary markedly in composition. We examined the effects of two different food sources, the Teklad Global Soy Protein-Free Extruded Rodent Diet (irradiated diet) and the Teklad Sterilizable Rodent Diet (autoclaved diet), on central nervous system disease. METHODS Three preclinical models for human disease: Two different experimental autoimmune encephalomyelitis models (multiple sclerosis) and the Theiler's murine encephalomyelitis virus-induced seizure model (epilepsy), were examined for the effects of two different food sources on disease. RESULTS We found that mice fed the irradiated diet had more severe clinical disease and enhanced seizures compared with animals provided the autoclaved diet in both experimental autoimmune encephalomyelitis models examined and in the Theiler's murine encephalomyelitis virus-induced seizure model, respectively. CONCLUSIONS Therefore, just altering the source of food (lab chow) can have marked effects on disease severity and outcome.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jordan T Sim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Matthew F Cusick
- Division of Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - June L Round
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Cytokine-dependent bidirectional connection between impaired social behavior and susceptibility to seizures associated with maternal immune activation in mice. Epilepsy Behav 2015; 50:40-5. [PMID: 26103532 PMCID: PMC4562803 DOI: 10.1016/j.yebeh.2015.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022]
Abstract
Maternal immune activation (MIA) results in the development of autism in the offspring via hyperactivation of IL-6 signaling. Furthermore, experimental studies showed that the MIA-associated activation of interleukin-1β (IL-1β) concurrently with IL-6 increases the rate and the severity of hippocampal kindling in mice, thus, offering an explanation for autism-epilepsy comorbidity. We examined whether epileptic phenotype triggered by prenatal exposure to IL-6 and IL-1β combination is restricted to kindling or whether it is reproducible in another model of epilepsy, whereby spontaneous seizures develop following kainic acid (KA)-induced status epilepticus. We also examined whether in mice prenatally exposed to IL-6 and IL-6+IL-1β, the presence of spontaneous seizures would exacerbate autism-like features. Between days 12 and 16 of pregnancy, C57BL/6J mice received daily injections of IL-6, IL-1β, or IL-6+IL-1β combination. At postnatal day 40, male offspring were examined for the presence of social behavioral deficit, and status epilepticus was induced by intrahippocampal KA injection. After 6weeks of monitoring for spontaneous seizures, sociability was tested again. Both IL-6 and IL-6+IL-1β offspring presented with social behavioral deficit. Prenatal exposure to IL-6 alleviated, while such exposure to IL-6+IL-1β exacerbated, the severity of KA-induced epilepsy. Increased severity of epilepsy in the IL-6+IL-1β mice correlated with the improvement of autism-like behavior. We conclude that complex and not necessarily agonistic relationships exist between epileptic and autism-like phenotypes in an animal model of MIA coupled with KA-induced epilepsy and that the nature of these relationships depends on components of MIA involved.
Collapse
|
9
|
Barker-Haliski ML, Dahle EJ, Heck TD, Pruess TH, Vanegas F, Wilcox KS, White HS. Evaluating an etiologically relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler's murine encephalomyelitis virus mouse model. J Pharmacol Exp Ther 2015; 353:318-29. [PMID: 25755209 PMCID: PMC4407718 DOI: 10.1124/jpet.114.222513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/26/2023] Open
Abstract
Central nervous system infections can underlie the development of epilepsy, and Theiler's murine encephalomyelitis virus (TMEV) infection in C57BL/6J mice provides a novel model of infection-induced epilepsy. Approximately 50-65% of infected mice develop acute, handling-induced seizures during the infection. Brains display acute neuropathology, and a high number of mice develop spontaneous, recurrent seizures and behavioral comorbidities weeks later. This study characterized the utility of this model for drug testing by assessing whether antiseizure drug treatment during the acute infection period attenuates handling-induced seizures, and whether such treatment modifies associated comorbidities. Male C57BL/6J mice infected with TMEV received twice-daily valproic acid (VPA; 200 mg/kg), carbamazepine (CBZ; 20 mg/kg), or vehicle during the infection (days 0-7). Mice were assessed twice daily during the infection period for handling-induced seizures. Relative to vehicle-treated mice, more CBZ-treated mice presented with acute seizures; VPA conferred no change. In mice displaying seizures, VPA, but not CBZ, reduced seizure burden. Animals were then randomly assigned to acute and long-term follow-up. VPA was associated with significant elevations in acute (day 8) glial fibrillary acidic protein (astrocytes) immunoreactivity, but did not affect NeuN (neurons) immunoreactivity. Additionally, VPA-treated mice showed improved motor performance 15 days postinfection (DPI). At 36 DPI, CBZ-treated mice traveled significantly less distance through the center of an open field, indicative of anxiety-like behavior. CBZ-treated mice also presented with significant astrogliosis 36 DPI. Neither CBZ nor VPA prevented long-term reductions in NeuN immunoreactivity. The TMEV model thus provides an etiologically relevant platform to evaluate potential treatments for acute seizures and disease modification.
Collapse
Affiliation(s)
- Melissa L Barker-Haliski
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - E Jill Dahle
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Taylor D Heck
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Timothy H Pruess
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Fabiola Vanegas
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Karen S Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS, Wilcox KS. Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler's virus model of temporal lobe epilepsy. Neurobiol Dis 2014; 64:98-106. [PMID: 24412221 DOI: 10.1016/j.nbd.2013.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 11/28/2022] Open
Abstract
Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure burden and comorbid conditions.
Collapse
Affiliation(s)
- Anthony D Umpierre
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - Gregory J Remigio
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah
| | - Kate Bradford
- Department of Pharmacology and Toxicology, University of Utah
| | - Anitha B Alex
- Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Peter J West
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Karen S Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA.
| |
Collapse
|
12
|
YE FEI, CHEN XUQIN, BAO GUANSHUI, HUA YIN, WANG ZHEDONG, BAO YICHUAN. Effect of topiramate on interleukin 6 expression in the hippocampus of amygdala-kindled epileptic rats. Exp Ther Med 2014; 7:223-227. [PMID: 24348794 PMCID: PMC3860984 DOI: 10.3892/etm.2013.1396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/16/2013] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to analyze the changes in expression and the possible functions of interleukin-6 (IL-6) in electrical kindling of the basolateral amygdala (BLA) in epileptic rats. Bipolar electrodes were implanted into the BLA of Sprague-Dawley rats, and the rats were then subjected to chronic electrical stimulation through the electrodes to induce kindling. The seizure characteristics and behavioral changes of the rats were observed, and electroencephalograms were recorded during and following kindling. The IL-6 mRNA expression in the hippocampi of the rats was analyzed using semi-quantitative reverse transcription-polymerase chain reaction, and control and topiramate (TPM)-treated groups were compared. The mean time-period required for kindling was 13.50±3.99 days, and the afterdischarge duration (ADD) measured between 21,450 and 119,720 msec. The expression of IL-6 mRNA was significantly upregulated in the kindled rats. TPM was able to depress the seizures and decrease the IL-6 level in the kindled rats. In conclusion, IL-6 mRNA was upregulated in the hippocampi of epileptic rats, and IL-6 may have participated in the process of kindling.
Collapse
Affiliation(s)
- FEI YE
- Department of Neurology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - XU-QIN CHEN
- Department of Neurology, Affiliated Children’s Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - GUAN-SHUI BAO
- Department of Neurology, No.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - YIN HUA
- Department of Child Neurology, Wuxi People’s Hospital, Wuxi, Jiangsu 214001, P.R. China
| | - ZHE-DONG WANG
- Department of Neurology, Affiliated Children’s Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - YI-CHUAN BAO
- Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
13
|
Infiltrating macrophages are key to the development of seizures following virus infection. J Virol 2012; 87:1849-60. [PMID: 23236075 DOI: 10.1128/jvi.02747-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infections of the central nervous system (CNS) can trigger an antiviral immune response, which initiates an inflammatory cascade to control viral replication and dissemination. The extent of the proinflammatory response in the CNS and the timing of the release of proinflammatory cytokines can lead to neuronal excitability. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two proinflammatory cytokines, have been linked to the development of acute seizures in Theiler's murine encephalomyelitis virus-induced encephalitis. It is unclear the extent to which the infiltrating macrophages versus resident CNS cells, such as microglia, contribute to acute seizures, as both cell types produce TNF-α and IL-6. In this study, we show that following infection a significantly higher number of microglia produced TNF-α than did infiltrating macrophages. In contrast, infiltrating macrophages produced significantly more IL-6. Mice treated with minocycline or wogonin, both of which limit infiltration of immune cells into the CNS and their activation, had significantly fewer macrophages infiltrating the brain, and significantly fewer mice had seizures. Therefore, our studies implicate infiltrating macrophages as an important source of IL-6 that contributes to the development of acute seizures.
Collapse
|
14
|
Libbey JE, Fujinami RS. Neurotropic viral infections leading to epilepsy: focus on Theiler's murine encephalomyelitis virus. Future Virol 2011; 6:1339-1350. [PMID: 22267964 PMCID: PMC3259611 DOI: 10.2217/fvl.11.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurotropic viruses cause viral encephalitis and are associated with the development of seizures/epilepsy. The first infection-driven animal model for epilepsy, the Theiler's murine encephalomyelitis virus-induced seizure model is described herein. Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus induces acute seizures from which the animals recover. However, once the virus is cleared, a significant portion of the animals that experienced acute seizures later develop epilepsy. Components of the innate immune response to viral infection, including IL-6 and complement component 3, have been implicated in the development of acute seizures. Multiple mechanisms, including neuronal cell destruction and cytokine activation, play a role in the development of acute seizures. Future studies targeting the innate immune response will lead to new therapies for seizures/epilepsy.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|