1
|
Saribas AS, Jensen LE, Safak M. Recent advances in discovery and functional analysis of the small proteins and microRNA expressed by polyomaviruses. Virology 2025; 602:110310. [PMID: 39612622 DOI: 10.1016/j.virol.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The polyomavirus family consists of a highly diverse group of small DNA viruses isolated from various species, including humans. Some family members have been used as model systems to understand the fundamentals of modern biology. After the discovery of the first two human polyomaviruses (JC virus and BK virus) during the early 1970s, their current number reached 14 today. Some family members cause considerably severe human diseases, including polyomavirus-associated nephropathy (PVAN), progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa (TS) and Merkel cell carcinoma (MCC). Polyomaviruses encode universal regulatory and structural proteins, but some members express additional virus-specific proteins and microRNA, which significantly contribute to the viral biology, cell transformation, and perhaps progression of the disease that they are associated with. In the current review, we summarized the recent advances in discovery, and functional and structural analysis of those viral proteins and microRNA.
Collapse
Affiliation(s)
- A Sami Saribas
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Liselotte E Jensen
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Ardakani R, Jia L, Matthews E, Thakur KT. Therapeutic advances in neuroinfectious diseases. Ther Adv Infect Dis 2024; 11:20499361241274246. [PMID: 39314743 PMCID: PMC11418331 DOI: 10.1177/20499361241274246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
There have been several major advances in therapeutic options for the treatment of neurological infections over the past two decades. These advances encompass both the development of new antimicrobial therapies and the repurposing of existing agents for new indications. In addition, advances in our understanding of the host immune response have allowed for the development of new immunomodulatory strategies in the treatment of neurological infections. This review focuses on the key advances in the treatment of neurological infections, including viral, bacterial, fungal, and prion diseases, with a particular focus on immunomodulatory treatment options. This review also highlights the process by which clinicians can request access to therapeutic agents on a compassionate or emergency basis when they may not be commercially available. While many therapeutic advances have been achieved in the past several years, there remains a pressing need for the continued development of additional therapeutic agents in the treatment of neurological infections.
Collapse
Affiliation(s)
- Rumyar Ardakani
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lucy Jia
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
- Program in Neuroinfectious Diseases, Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital
| |
Collapse
|
4
|
Dsilva L, McCarthy K, Lyons J, Cabigas B, Campbell N, Kong G, Adams B, Kuhelj R, Singhal P, Smirnakis K. Progressive multifocal leukoencephalopathy with natalizumab extended or standard interval dosing in the United States and the rest of the world. Expert Opin Drug Saf 2023; 22:995-1002. [PMID: 37272350 DOI: 10.1080/14740338.2023.2221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML), an important identified risk for natalizumab, has been described for standard interval dosing (SID; dosing interval every-4-weeks). Information on PML with natalizumab extended interval dosing (EID; dosing interval >every-4-weeks) in the US and the rest of the world (ROW) is limited. RESEARCH DESIGN AND METHODS A retrospective analysis of patient demographics, risk factors, clinical characteristics, and clinical outcomes was conducted on confirmed natalizumab EID and SID PML cases evaluated from Biogen pharmacovigilance systems. RESULTS Of 857 confirmed natalizumab PML cases, EID and SID accounted for 7.5% and 92.5%, respectively (US: 12.9% and 87.1%; ROW: 5.4% and 94.6%). PML risk factors included anti-JCV index > 1.5 (US: EID, 56.7% and SID, 12.8%; ROW: EID, 44.1% and SID, 21.0%), mean duration of natalizumab treatment (US: 90.0 and 70.2 months; ROW: 54.1 and 49.8 months), and prior immunosuppressive therapy (US: 20.0% and 21.7%; ROW:11.8% and 18.0%). In the EID and SID groups, 68.8% and 76.0% of patients, respectively, were alive at up to 2 years after diagnosis. CONCLUSIONS This analysis provides insights on PML in patients receiving natalizumab that extend current knowledge, particularly regarding PML in patients receiving natalizumab EID, which can be built upon in the future.
Collapse
Affiliation(s)
| | - Kerry McCarthy
- Drug Safety, Pharmacovigilance & Systems & Data Analytics, Biogen, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Karen Smirnakis
- Safety and Benefit Risk Management, Biogen, Cambridge, MA, USA
| |
Collapse
|
5
|
Successful treatment of HIV-associated progressive multifocal leukoencephalopathy (PML) with mirtazapine, mefloquine, and IVIG combination therapy: a case report. J Neurovirol 2023; 29:111-115. [PMID: 36795262 DOI: 10.1007/s13365-023-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system caused by reactivation of the polyomavirus JC (JCV). Human immunodeficiency virus (HIV) infection is one of the leading causes of PML which has high morbidity and mortality due to the lack of a proven standard treatment. We found clinical and radiological improvement with the combination of high-dose methylprednisolone, mirtazapine, mefloquine, and IVIG in our patient who presented with neurological symptoms and had diagnosed concurrent acquired immunodeficiency syndrome (AIDS) and PML. To our knowledge, our case is the first HIV-associated PML which responded to this combination therapy.
Collapse
|
6
|
Outcome of progressive multifocal leukoencephalopathy treated by Interleukin‐ 7. Ann Neurol 2022; 91:496-505. [DOI: 10.1002/ana.26307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
|
7
|
Innovative therapeutic concepts of progressive multifocal leukoencephalopathy. J Neurol 2022; 269:2403-2413. [PMID: 34994851 PMCID: PMC8739669 DOI: 10.1007/s00415-021-10952-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is an opportunistic viral disease of the brain-caused by human polyomavirus 2. It affects patients whose immune system is compromised by a corresponding underlying disease or by drugs. Patients with an underlying lymphoproliferative disease have the worst prognosis with a mortality rate of up to 90%. Several therapeutic strategies have been proposed but failed to show any benefit so far. Therefore, the primary therapeutic strategy aims to reconstitute the impaired immune system to generate an effective endogenous antiviral response. Recently, anti-PD-1 antibodies and application of allogeneic virus-specific T cells demonstrated promising effects on the outcome in individual PML patients. This article aims to provide a detailed overview of the literature with a focus on these two treatment approaches.
Collapse
|
8
|
Bernard-Valnet R, Koralnik IJ, Du Pasquier R. Advances in Treatment of Progressive Multifocal Leukoencephalopathy. Ann Neurol 2021; 90:865-873. [PMID: 34405435 PMCID: PMC9291129 DOI: 10.1002/ana.26198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Progressive multifocal encephalopathy (PML) is a severe demyelinating disease of the central nervous system (CNS) caused by JC virus (JCV), which occurs in immunocompromised individuals. Management of PML relies on restoration of immunity within the CNS. However, when this restoration cannot be readily achieved, PML has a grim prognosis. Innovative strategies have shown promise in promoting anti‐JCV immune responses, and include T‐cell adoptive transfer or immune checkpoint inhibitor therapies. Conversely, management of immune reconstitution inflammatory syndrome, particularly in iatrogenic PML, remains a major challenge. In this paper, we review recent development in the treatment of PML. ANN NEUROL 2021;90:865–873
Collapse
Affiliation(s)
- Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Igor J Koralnik
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Saxena R, Saribas S, Jadiya P, Tomar D, Kaminski R, Elrod JW, Safak M. Human neurotropic polyomavirus, JC virus, agnoprotein targets mitochondrion and modulates its functions. Virology 2021; 553:135-153. [PMID: 33278736 PMCID: PMC7847276 DOI: 10.1016/j.virol.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.
Collapse
Affiliation(s)
- Reshu Saxena
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Rafal Kaminski
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
10
|
Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2020; 17:37-51. [PMID: 33219338 PMCID: PMC7678594 DOI: 10.1038/s41582-020-00427-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. In this Review, Cortese et al. provide an overview of the pathobiology and evolving presentations of progressive multifocal leukoencephalopathy and other diseases caused by JC virus, and discuss emerging immunotherapeutic approaches that could increase survival. Progressive multifocal leukoencephalopathy (PML) is a rare, debilitating and often fatal disease of the CNS caused by JC virus (JCV). JCV establishes asymptomatic, lifelong persistent or latent infection in immune competent hosts, but impairment of cellular immunity can lead to reactivation of JCV and PML. PML most commonly occurs in patients with HIV infection or lymphoproliferative disease and in patients who are receiving natalizumab for treatment of multiple sclerosis. The clinical phenotype of PML varies and is shaped primarily by the host immune response; changes in the treatment of underlying diseases associated with PML have changed phenotypes over time. Other clinical manifestations of JCV infection have been described, including granule cell neuronopathy. Survival of PML depends on reversal of the underlying immunosuppression; emerging immunotherapeutic strategies include use of checkpoint inhibitors and adoptive T cell transfer.
Collapse
Affiliation(s)
- Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. The Use of Antimalarial Drugs against Viral Infection. Microorganisms 2020; 8:microorganisms8010085. [PMID: 31936284 PMCID: PMC7022795 DOI: 10.3390/microorganisms8010085] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.
Collapse
Affiliation(s)
- Sarah D’Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Diletta Scaccabarozzi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milan, Italy;
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Denise P. Ilboudo
- Département des Sciences de la Vie, University of Fada N’Gourma (UFDG), Fada N’Gourma BP 54, Burkina Faso;
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
- Correspondence: ; Tel.: +39-02-50315070
| |
Collapse
|
12
|
Saribas AS, Datta PK, Safak M. A comprehensive proteomics analysis of JC virus Agnoprotein-interacting proteins: Agnoprotein primarily targets the host proteins with coiled-coil motifs. Virology 2019; 540:104-118. [PMID: 31765920 DOI: 10.1016/j.virol.2019.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) Agnoprotein (Agno) plays critical roles in successful completion of the viral replication cycle. Understanding its regulatory roles requires a complete map of JCV-host protein interactions. Here, we report the first Agno interactome with host cellular targets utilizing "Two-Strep-Tag" affinity purification system coupled with mass spectroscopy (AP/MS). Proteomics data revealed that Agno primarily targets 501 cellular proteins, most of which contain "coiled-coil" motifs. Agno-host interactions occur in several cellular networks including those involved in protein synthesis and degradation; and cellular transport; and in organelles, including mitochondria, nucleus and ER-Golgi network. Among the Agno interactions, Rab11B, Importin and Crm-1 were first validated biochemically and further characterization was done for Crm-1, using a HIV-1 Rev-M10-like Agno mutant (L33D + E34L), revealing the critical roles of L33 and E34 residues in Crm-1 interaction. This comprehensive proteomics data provides new foundations to unravel the critical regulatory roles of Agno during the JCV life cycle.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Prasun K Datta
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
13
|
Saribas AS, Coric P, Bouaziz S, Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J Cell Physiol 2018; 234:8295-8315. [PMID: 30390301 DOI: 10.1002/jcp.27715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Polyomavirus family consists of a highly diverse group of small DNA viruses. The founding family member (MPyV) was first discovered in the newborn mouse in the late 1950s, which induces solid tumors in a wide variety of tissue types that are the epithelial and mesenchymal origin. Later, other family members were also isolated from a number of mammalian, avian and fish species. Some of these viruses significantly contributed to our current understanding of the fundamentals of modern biology such as transcription, replication, splicing, RNA editing, and cell transformation. After the discovery of first two human polyomaviruses (JC virus [JCV] and BK virus [BKV]) in the early 1970s, there has been a rapid expansion in the number of human polyomaviruses in recent years due to the availability of the new technologies and brought the present number to 14. Some of the human polyomaviruses cause considerably serious human diseases, including progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy, Merkel cell carcinoma, and trichodysplasia spinulosa. Emerging evidence suggests that the expression of the polyomavirus genome is more complex than previously thought. In addition to encoding universally expressed regulatory and structural proteins (LT-Ag, Sm t-Ag, VP1, VP2, and VP3), some polyomaviruses express additional virus-specific regulatory proteins and microRNAs. This review summarizes the recent advances in polyomavirus genome expression with respect to the new viral proteins and microRNAs other than the universally expressed ones. In addition, a special emphasis is devoted to the recent structural and functional discoveries in the field of polyomavirus agnoprotein which is expressed only by JCV, BKV, and simian virus 40 genomes.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Zhang ZH, Jiang BC, Liu XH, Zhang MX, Li ZSN, Zhu GZ. Interleukin-7 Regulates T Follicular Helper Cell Function in Patients with Chronic Hepatitis C. Viral Immunol 2018; 31:417-425. [PMID: 29672235 DOI: 10.1089/vim.2018.0010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling through interleukin (IL)-7 is essential and required for development, differentiation, proliferation, and homeostasis of T cells. However, the role of IL-7 in regulation of CD4+ T cells in chronic viral infections was not fully elucidated. Thus, the aim of the current study was to investigate the immunomodulatory activity of IL-7 to T follicular helper (Tfh) cells and its contribution to pathogenesis of chronic HCV, hepatitis C virus (HCV) infection. A total of 47 patients with chronic hepatitis C and 19 normal controls were enrolled. Serum IL-7 and proportion of Tfh cells was measured. The regulatory function of IL-7 to Tfh cells was also investigated in CD4+ T cells and CD4+ T/HCVcc-infected Huh7.5 cell cocultured system. Serum IL-7 concentration was significantly downregulated in patients with chronic hepatitis C, and was negatively correlated with HCV RNA level. Tfh frequency and Tfh-associated cytokines (IL-21 and IL-6) were also reduced in chronic HCV-infected patients. Moreover, recombinant IL-7 stimulation elevated proportion of Tfh cells and IL-21/IL-6 secretion in both HCV-specific and nonspecific manners. Furthermore, IL-7-treated CD4+ T cells exhibited elevated antiviral activities without killing infected hepatocytes, which presented as inhibition of HCV RNA, induction of antiviral proteins, and promotion of cytokine production (especially IL-21) in cocultured system. This process might be dependent on IL-6 secretion. The current data revealed that IL-7 regulated HCV-specific and nonspecific activated Tfh cells, which might contribute to viral clearance. IL-7 could be a potential therapeutic agent for the treatment of chronic hepatitis C.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, Jilin Province, China
| | - Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, Jilin Province, China
| | - Xiao-Hong Liu
- 2 The Geriatric Department, The First Bethune Hospital of Jilin University , Changchun, Jilin Province, China
| | - Meng-Xuan Zhang
- 3 Clinical Medicine College, Changchun University of Chinese Medicine , Changchun, Jilin Province, China
| | - Zhen-Sheng-Nan Li
- 4 Clinical Medicine College, Jilin University , Changchun, Jilin Province, China
| | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, Jilin Province, China
| |
Collapse
|