1
|
Yang C, Wang X, Zhao X, Wu Y, Lin J, Zhao Y, Xu Y, Sun K, Zhang C, Wan Z, Zhao W, Xiao Y, Sun H, Chen D, Dong W, Wang T, Wang W. Effect of Fluorine Atoms and Piperazine Rings on Biotoxicity of Norfloxacin Analogues: Combined Experimental and Theoretical Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:886-901. [PMID: 39722844 PMCID: PMC11667292 DOI: 10.1021/envhealth.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 12/28/2024]
Abstract
To clarify the effect of the fluorine atom and piperazine ring on norfloxacin (NOR), NOR degradation products (NOR-DPs, P1-P8) were generated via UV combined with hydrogen peroxide (UV/H2O2) technology. NOR degradation did not significantly affect cytotoxicity of NOR against BV2, A549, HepG2, and Vero E6 cells. Compared with that of NOR, mutagenicity and median lethal concentration of P1-P8 in fathead minnow were increased, and bioaccumulation factor and oral median lethal dose of P1-P8 in rats were decreased. Molecular docking was used to evaluate the inhibitory effect of DNA gyrase A (gyrA) on NOR-DPs to determine the molecular-level mechanism and establish the structure-activity relationship. Results indicated that the most common amino acid residues were Ile13, Ser27, Val28, Gly31, Asp36, Arg46, Arg47, Asp157, and Gly340; hydrogen bonds and hydrophobic interactions played key roles in the inhibitory effect. Binding area (BA) decreased from 350.80 Å2 (NOR) to 346.21 Å2 (P1), and the absolute value of binding energy (|BE|) changed from 2.53 kcal/mol (NOR) to 2.54 kcal/mol (P1), indicating that the fluorine atom mainly affects BA. The piperazine ring clearly influenced BA and |BE|. "Yang ChuanXi Rules" were used to explain effects of molecular weight (MW), BA, |BE|, and sum of η1 + η2 (η1: normalization of BA, η2: normalization of |BE|) and predict biotoxicity of NOR-DPs based on half-maximum inhibitory concentration (IC50), half-minimal inhibitory concentration (MIC50), and half-minimal bactericidal concentration (MBC50) values.
Collapse
Affiliation(s)
- Chuanxi Yang
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoning Wang
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xinyan Zhao
- Business
School, Qingdao University of Technology, Qingdao 266520, China
| | - Yongkun Wu
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingyan Lin
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuhan Zhao
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yiyong Xu
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Kaipeng Sun
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chao Zhang
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ziheng Wan
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Weihua Zhao
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yihua Xiao
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Haofen Sun
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dong Chen
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wenping Dong
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Tieyu Wang
- Guangdong
Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Weiliang Wang
- School
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
2
|
Chen Y, Cheng Q, Zeng S, Lv S. Potential analgesic effect of Foshousan oil-loaded chitosan-alginate nanoparticles on the treatment of migraine. Front Pharmacol 2023; 14:1190920. [PMID: 37680717 PMCID: PMC10482050 DOI: 10.3389/fphar.2023.1190920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background: Migraine is a common neurovascular disorder with typical throbbing and unilateral headaches, causing a considerable healthcare burden on the global economy. This research aims to prepare chitosan-alginate (CS-AL) nanoparticles (NPs) containing Foshousan oil (FSSO) and investigate its potential therapeutic effects on the treatment of migraine. Methods: FSSO-loaded CS-AL NPs were prepared by using the single emulsion solvent evaporation method. Lipopolysaccharide (LPS)-stimulated BV-2 cells and nitroglycerin (NTG)-induced migraine mice were further used to explore anti-migraine activities and potential mechanisms of this botanical drug. Results: FSSO-loaded CS-AL NPs (212.1 ± 5.2 nm, 45.1 ± 6.2 mV) had a well-defined spherical shape with prolonged drug release and good storage within 4 weeks. FSSO and FSSO-loaded CS-AL NPs (5, 10, and 15 μg/mL) showed anti-inflammatory activities in LPS-treated BV-2 cells via reducing the levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and nitric oxide (NO), but elevating interleukin-10 (IL-10) expressions. Moreover, FSSO-loaded CS-AL NPs (52 and 104 mg/kg) raised pain thresholds against the hot stimulus and decreased acetic acid-induced writhing frequency and foot-licking duration in NTG-induced migraine mice. Compared with the model group, calcitonin gene-related peptide (CGRP) and NO levels were downregulated, but 5-hydroxytryptamine (5-HT) and endothelin (ET) levels were upregulated along with rebalanced ET/NO ratio, and vasomotor dysfunction was alleviated by promoting cerebral blood flow (CBF) in the FSSO-loaded CS-AL NPs (104 mg/kg) group. Conclusion: FSSO-loaded CS-AL NPs could attenuate migraine via inhibiting neuroinflammation in LPS-stimulated BV-2 cells and regulating vasoactive substances in NTG-induced migraine mice. These findings suggest that the FSS formula may be exploited as new phytotherapy for treating migraine.
Collapse
Affiliation(s)
- Yulong Chen
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Shan Zeng
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
| | - Site Lv
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Kučić N, Rački V, Šverko R, Vidović T, Grahovac I, Mršić-Pelčić J. Immunometabolic Modulatory Role of Naltrexone in BV-2 Microglia Cells. Int J Mol Sci 2021; 22:ijms22168429. [PMID: 34445130 PMCID: PMC8395119 DOI: 10.3390/ijms22168429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Naltrexone is an opioid receptor antagonist commonly used to treat opioid and alcohol dependence. The use of low dose naltrexone (LDN) was found to have anti-inflammatory properties for treatment of diseases such as fibromyalgia, Crohn’s disease, multiple sclerosis and regional pain syndromes. Related to its anti-neuroinflammatory properties, the mechanism of action is possibly mediated via Toll-like receptor 4 antagonism, which is widely expressed on microglial cells. The aim of the present study was to assess the immunometabolic effects of naltrexone on microglia cells in in vitro conditions. Methods: All experiments were performed in the BV-2 microglial cell line. The cells were treated with naltrexone at 100 μM concentrations corresponding to low dose for 24 h. Cell viability was assessed for every drug dose. To induce additional activation, the cells were pretreated with LPS and IFN-γ. Immunofluorescence was used to analyse the classical microglial activation markers iNOS and CD206, while Seahorse was used for real-time cellular metabolic assessments. mTOR activity measured over the expression of a major direct downstream target S6K was assessed using western blot. Results: LDN induced a shift from highly activated pro-inflammatory phenotype (iNOShighCD206low) to quiescent anti-inflammatory M2 phenotype (iNOSlowCD206high) in BV-2 microglia cells. Changes in the inflammatory profile were accompanied by cellular metabolic switching based on the transition from high glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). LDN-treated cells were able to maintain a metabolically suppressive phenotype by supporting OXPHOS with high oxygen consumption, and also maintain a lower energetic state due to lower lactate production. The metabolic shift induced by transition from glycolysis to mitochondrial oxidative metabolism was more prominent in cells pretreated with immunometabolic modulators such as LPS and IFN-γ. In a dose-dependent manner, naltrexone also modulated mTOR/S6K expression, which underlies the cell metabolic phenotype regulating microglia immune properties and adaptation. Conclusion: By modulating the phenotypic features by metabolic switching of activated microglia, naltrexone was found to be an effective and powerful tool for immunometabolic reprogramming and could be a promising novel treatment for various neuroinflammatory conditions.
Collapse
Affiliation(s)
- Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-651-192; Fax: +385-51-675-699
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Roberta Šverko
- Emergency Department, Clinical Hospital Center Rijeka, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (R.Š.); (T.V.)
| | - Toni Vidović
- Emergency Department, Clinical Hospital Center Rijeka, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (R.Š.); (T.V.)
| | - Irena Grahovac
- Pharmacy Irena Grahovac, Trg I. Istarske brigade 5, 52100 Pula, Croatia;
| | - Jasenka Mršić-Pelčić
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
4
|
Krstanović F, Britt WJ, Jonjić S, Brizić I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021; 13:1078. [PMID: 34200083 PMCID: PMC8227981 DOI: 10.3390/v13061078] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stipan Jonjić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - Ilija Brizić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| |
Collapse
|
5
|
Racki V, Marcelic M, Stimac I, Petric D, Kucic N. Effects of Haloperidol, Risperidone, and Aripiprazole on the Immunometabolic Properties of BV-2 Microglial Cells. Int J Mol Sci 2021; 22:4399. [PMID: 33922377 PMCID: PMC8122792 DOI: 10.3390/ijms22094399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Microglial cells are resident macrophages in the brain that have been implicated in the pathophysiology of schizophrenia. There is a lack of studies covering the effects of antipsychotics on microglial cells. The current literature points to a possible anti-inflammatory action without clear mechanisms of action. The aim of this study is to characterize the effects of haloperidol, risperidone and aripiprazole on BV-2 microglial cells in in vitro conditions. We have used immunofluorescence and flow cytometry to analyze the classical pro and anti-inflammatory markers, while a real-time metabolic assay (Seahorse) was used to assess metabolic function. We analyzed the expression of p70S6K to evaluate the mTOR pathway activity with Western blot. In this study, we demonstrate the varying effects of haloperidol, risperidone and aripiprazole administration in BV-2 microglial cells. All three tested antipsychotics were successful in reducing the pro-inflammatory action of microglial cells, although only aripiprazole increased the expression of anti-inflammatory markers. Most significant differences in the possible mechanisms of action were seen in the real-time metabolic assays and in the mTORC1 signaling pathway activity, with aripiprazole being the only antipsychotic to reduce the mTORC1 activity. Our results shed some new light on the effects of haloperidol, risperidone and aripiprazole action in microglial cells, and reveal a novel possible mechanism of action for aripiprazole.
Collapse
Affiliation(s)
- Valentino Racki
- Department of Neurology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Marina Marcelic
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (I.S.); (N.K.)
| | - Igor Stimac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (I.S.); (N.K.)
| | - Daniela Petric
- Department of Psychiatry, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Natalia Kucic
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia; (M.M.); (I.S.); (N.K.)
| |
Collapse
|
6
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|