1
|
Crist RC, Chehimi SN, Divakaran SS, Montague MJ, Tremblay S, Snyder-Mackler N, Bohlen MO, Chiou KL, Zintel TM, Platt ML, Juul H, Silvestri G, Hayes MR, Kolson DL, Reiner BC. SIV infection induces alterations in gene expression and loss of interneurons in Rhesus Macaque frontal cortex during early systemic infection. Transl Psychiatry 2025; 15:38. [PMID: 39890796 PMCID: PMC11785960 DOI: 10.1038/s41398-025-03261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Understanding the neurobiological mechanisms underlying HIV-associated neurocognitive decline in people living with HIV is frequently complicated by an inability to analyze changes across the course of the infection and frequent presence of comorbid psychiatric and substance use disorders. Preclinical non-human primate simian immunodeficiency virus (SIV) models help address these shortcomings. However, SIV studies frequently target protracted endpoints, limiting our understanding of the neuromolecular alterations during the early post-infection window. To begin to address this knowledge gap, we utilized single nuclei transcriptomics to examine frontal cortex samples of rhesus macaques 10- and 20-days post-SIV infection, compared to non-infected controls. We identify and validated a decrease in inhibitory neurons during the early post infection window, representing a potential substrate of longer-term injury and neurocognitive impairment in people living with HIV. Differential expression identified alterations in cellular subtype gene expression that persisted over the 20-day time course and short-lived differences only detected at 10-days post-SIV infection. In silico predicted regulatory mechanisms and dysregulated neural signaling pathways are presented. Analysis of cell-cell interaction networks identify altered signal pathways in the frontal cortex that may represent regional alterations in cell-cell communications. In total, these results identify cell type-specific molecular mechanisms putatively capable of underlying long-term neurocognitive alterations in persons living with HIV.
Collapse
Affiliation(s)
- Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saurabh S Divakaran
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Trish M Zintel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Halvor Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Silvestri
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Druid Hills, GA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Byrnes SJ, Angelovich TA, Busman-Sahay K, Cochrane CR, Roche M, Estes JD, Churchill MJ. Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses 2022; 14:v14091997. [PMID: 36146803 PMCID: PMC9500831 DOI: 10.3390/v14091997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human Immunodeficiency virus (HIV)-associated neurocognitive disorders are a major burden for people living with HIV whose viremia is stably suppressed with antiretroviral therapy. The pathogenesis of disease is likely multifaceted, with contributions from viral reservoirs including the brain, chronic and systemic inflammation, and traditional risk factors including drug use. Elucidating the effects of each element on disease pathogenesis is near impossible in human clinical or ex vivo studies, facilitating the need for robust and accurate non-human primate models. In this review, we describe the major non-human primate models of neuroHIV infection, their use to study the acute, chronic, and virally suppressed infection of the brain, and novel therapies targeting brain reservoirs and inflammation.
Collapse
Affiliation(s)
- Sarah J. Byrnes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Thomas A. Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Catherine R. Cochrane
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jacob D. Estes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
- Oregon National Primate Research Centre, Oregon Health & Science University, Portland, OR 97006, USA
| | - Melissa J. Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
- Departments of Microbiology and Medicine, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
3
|
Titanji BK, Wang Z, Chen J, Hui Q, So-Armah K, Freiberg M, Justice AC, Ke X, Marconi VC, Sun YV. Soluble CD14-associated DNA methylation sites predict mortality among men with HIV infection. AIDS 2022; 36:1563-1571. [PMID: 35979830 PMCID: PMC9394925 DOI: 10.1097/qad.0000000000003279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Elevated plasma levels of sCD14 predict all-cause mortality in people with HIV (PWH). Epigenetic regulation plays a key role in infection and inflammation. To reveal the epigenetic relationships between sCD14, immune function and disease progression among PWH, we conducted an epigenome-wide association study (EWAS) of sCD14 and investigated the relationship with mortality. DESIGN AND METHODS DNA methylation (DNAm) levels of peripheral blood samples from PWH in the Veterans Aging Cohort Study (VACS) were measured using the Illumina Infinium Methylation 450K (n = 549) and EPIC (850K) BeadChip (n = 526). Adjusted for covariates and multiple testing, we conducted an epigenome-wide discovery, replication, and meta-analysis to identify significant associations with sCD14. We then examined and replicated the relationship between the principal epigenetic sites and survival using Cox regression models. FINDINGS We identified 118 DNAm sites significantly associated with sCD14 in the meta-analysis of 1075 PWH. The principal associated DNAm sites mapped to genes (e.g. STAT1, PARP9, IFITM1, MX1, and IFIT1) related to inflammation and antiviral response. Adjusting for multiple testing, 10 of 118 sCD14-associated DNAm sites significantly predicted survival time conditional on sCD14 levels. CONCLUSION The identification of DNAm sites independently predicting survival may improve our understanding of prognosis and potential therapeutic targets among PWH.
Collapse
Affiliation(s)
- Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine
| | - Zeyuan Wang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | | | - Matthew Freiberg
- Cardiovascular Medicine Division and Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, TN
| | - Amy C Justice
- Yale University School of Medicine, New Haven
- Connecticut Veteran Health System, West Haven, CT
| | - Xu Ke
- Yale University School of Medicine, New Haven
- Connecticut Veteran Health System, West Haven, CT
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine
- Atlanta Veterans Affairs Healthcare System, Decatur
- Hubert Department of Global Health, Rollins School of Public Health
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Atlanta Veterans Affairs Healthcare System, Decatur
| |
Collapse
|
4
|
Leung AKL, Griffin DE, Bosch J, Fehr AR. The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses. Pathogens 2022; 11:pathogens11010094. [PMID: 35056042 PMCID: PMC8780475 DOI: 10.3390/pathogens11010094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host’s protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.
Collapse
Affiliation(s)
- Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA;
- InterRayBio, LLC, Cleveland, OH 44106, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| |
Collapse
|
5
|
Ojeda-Juárez D, Kaul M. Transcriptomic and Genetic Profiling of HIV-Associated Neurocognitive Disorders. Front Mol Biosci 2021; 8:721954. [PMID: 34778371 PMCID: PMC8586712 DOI: 10.3389/fmolb.2021.721954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Early in the HIV pandemic, it became evident that people living with HIV (PLWH) develop a wide range of neurological and neurocognitive complications. Even after the introduction of combination antiretroviral therapy (cART), which dramatically improved survival of PLWH, the overall number of people living with some form of HIV-associated neurocognitive disorders (HAND) seemed to remain unchanged, although the incidence of dementia declined and questions about the incidence and diagnosis of the mildest form of HAND arose. To better understand this complex disease, several transcriptomic analyses have been conducted in autopsy samples, as well as in non-human primates and small animal rodent models. However, genetic studies in the HIV field have mostly focused on the genetic makeup of the immune system. Much less is known about the genetic underpinnings of HAND. Here, we provide a summary of reported transcriptomic and epigenetic changes in HAND, as well as some of the potential genetic underpinnings that have been linked to HAND, and discuss future directions with hurdles to overcome and angles that remain to be explored.
Collapse
Affiliation(s)
- Daniel Ojeda-Juárez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Gopalakrishnan RM, Aid M, Mercado NB, Davis C, Malik S, Geiger E, Varner V, Jones R, Bosinger SE, Piedra-Mora C, Martinot AJ, Barouch DH, Reeves RK, Tan CS. Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection. JCI Insight 2021; 6:e152013. [PMID: 34676832 PMCID: PMC8564899 DOI: 10.1172/jci.insight.152013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Knowledge of immune activation in the brain during acute HIV infection is crucial for the prevention and treatment of HIV-associated neurological disorders. We determined regional brain (basal ganglia, thalamus, and frontal cortex) immune and virological profiles at 7 and 14 days post infection (dpi) with SIVmac239 in rhesus macaques. The basal ganglia and thalamus had detectable viruses earlier (7 dpi) than the frontal cortex (14 dpi) and contained higher quantities of viruses than the latter. Increased immune activation of astrocytes and significant infiltration of macrophages in the thalamus at 14 dpi coincided with elevated plasma viral load, and SIV colocalized only within macrophages. RNA signatures of proinflammatory responses, including IL-6, were detected at 7 dpi in microglia and interestingly, preceded reliable detection of virus in tissues and were maintained in the chronically infected macaques. Countering the proinflammatory response, the antiinflammatory response was not detected until increased TGF-β expression was found in perivascular macrophages at 14 dpi. But this response was not detected in chronic infection. Our data provide evidence that the interplay of acute proinflammatory and antiinflammatory responses in the brain likely contributed to the overt neuroinflammation, where the immune activation preceded reliable viral detection.
Collapse
Affiliation(s)
- Raja Mohan Gopalakrishnan
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Noe B. Mercado
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Davis
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shaily Malik
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma Geiger
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven E. Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cesar Piedra-Mora
- Department of Comparative Pathobiology, Section of Pathology, and Departments of Infectious Diseases and Global Health and Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Comparative Pathobiology, Section of Pathology, and Departments of Infectious Diseases and Global Health and Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - C. Sabrina Tan
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|