1
|
Yin T, Zhang Z, Xu L, Li C, Han D. Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste. ChemistryOpen 2024; 13:e202300178. [PMID: 38214441 PMCID: PMC11095150 DOI: 10.1002/open.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Efficient energy storage systems are crucial for the optimal utilization of renewable energy. Sodium-ion batteries (SIBs) are considered potential substitutes for next-generation low-cost energy storage systems due to the low cost and abundance of sodium resources. However, the industrialization of SIBs faces a great challenge in terms of the anode. Hard carbon could be a promising anode material due to its high capacity and low cost which originates from biomass. This study used pre-treatment and template carbonization methods to extract a hard carbon material from a large amount of discarded biomass in bamboo powder waste. This material has a good initial Coulombic efficiency of 78.6 % and good cycling stability when applied to sodium ion batteries.Typically, the optimal hard carbon material is used as the anode to prepare sodium ion battery prototypes to demonstrate their potential applications. The anode exhibited excellent sodium storage performance with a reversible capacity of 303 mAh ⋅ g-1 at 1 C rate and good cycling performance, retaining 92.0 % of its capacity after 100 cycles. These results demonstrate that BPPHC is a promising candidate for anode material in sodium-ion batteries. This work suggests that bamboo powder could be a low-cost anode material for SIBs.
Collapse
Affiliation(s)
- Tianqi Yin
- Institute of Advanced TechnologyUniversity of Science and Technology of China230031HefeiChina
| | - Zhengli Zhang
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science and Technology of China230041HefeiChina
| | - Lizhi Xu
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science and Technology of China230041HefeiChina
| | - Chuang Li
- Institute of Advanced TechnologyUniversity of Science and Technology of China230031HefeiChina
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science and Technology of China230041HefeiChina
| | - Dongdong Han
- Institute of Advanced TechnologyUniversity of Science and Technology of China230031HefeiChina
| |
Collapse
|
2
|
Wang YS, Huo TR, Wang Y, Bai JW, Huang PP, Li C, Deng SY, Mei H, Qian J, Zhang XC, Ding C, Zhang QY, Wang WK. Constructing mesoporous biochar derived from waste carton: Improving multi-site adsorption of dye wastewater and investigating mechanism. ENVIRONMENTAL RESEARCH 2024; 242:117775. [PMID: 38029815 DOI: 10.1016/j.envres.2023.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nm✕1.1 nm✕0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.
Collapse
Affiliation(s)
- Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong-Rong Huo
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Jia-Wen Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ping-Ping Huang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Chen Li
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Shi-Yu Deng
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Hong Mei
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Jun Qian
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230000, China
| | - Xiao-Chi Zhang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Chen Ding
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Qiu-Yu Zhang
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Wei-Kang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Gullifa G, Barone L, Papa E, Materazzi S, Risoluti R. On-Line Thermally Induced Evolved Gas Analysis: An Update-Part 2: EGA-FTIR. Molecules 2022; 27:8926. [PMID: 36558054 PMCID: PMC9788466 DOI: 10.3390/molecules27248926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The on-line thermally induced evolved gas analysis (OLTI-EGA) is widely applied in many different fields. Aimed to update the applications, our group has systematically collected and published examples of EGA characterizations. Following the recently published review on EGA-MS applications, this second part reviews the latest applications of Evolved Gas Analysis performed by on-line coupling heating devices to infrared spectrometers (EGA-FTIR). The selected 2019, 2020, 2021 and early 2022 references are collected and briefly described in this review; these are useful to help researchers to easily find applications that are sometimes difficult to locate.
Collapse
Affiliation(s)
| | | | | | - Stefano Materazzi
- Department of Chemistry, “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Roberta Risoluti
- Department of Chemistry, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|